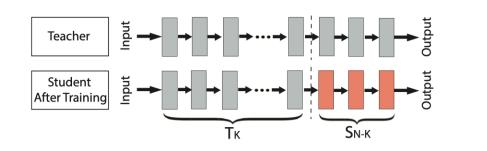


王晋东 微软亚洲研究院 <u>https://jd92.wang/</u> 2022.04.08

This talk will not be possible without my interns and collaborators.

## **Background: transfer learning**

- ·Transfer learning: 迁移学习
  - Reuse *pre-trained* models by *fine-tuning* it for downstream tasks
  - · Today's ML applications widely adopt the pre-train and fine-tune paradigm
    - $\cdot$  Why? Because training from scratch is extremely time-consuming
  - Model highlights: ResNet for CV, BERT and RoBERTa for NLP

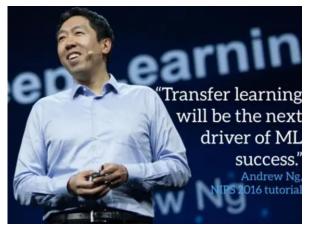


| <b>Primitive Models</b> | # Repositories |
|-------------------------|----------------|
| GoogLeNet [56]          | 466            |
| AlexNet [33]            | 303            |
| Inception.v3 [57]       | 190            |
| ResNet [27]             | 341            |
| VGG [54]                | 931            |
| Total                   | 2,220          |

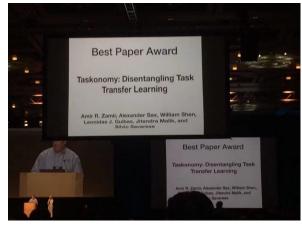
| Hugging Face Q Search models, datasets, users    |                      |
|--------------------------------------------------|----------------------|
| Tasks                                            | Models 23,189 (      |
| Fill-Mask Duestion Answering Summarization       |                      |
| Table Question Answering     Text Classification | bert-base-uncas      |
| Vert Generation Structure Text Generation        | S fit hast - opercer |
| 號 Token Classification 🛪 Translation             | roberta-base         |
| <b>Zero-Shot Classification</b>                  | Fill-Mask • Updated  |

- Industrial applications
  - · Google Cloud ML tutorial suggests using Google's Inception V3 model as a pre-trained model
  - Microsoft Cognitive Toolkit (CNTK) suggests using ResNet18 as a pre-trained model for tasks such as flower classification

#### Transfer learning: always the research frontier



NIPS'16 tutorial



CVPR'18 best paper



#### IJCAI'18 Ads challenge winner

ACL'19 opening keynote



ACL'20 best paper nominee

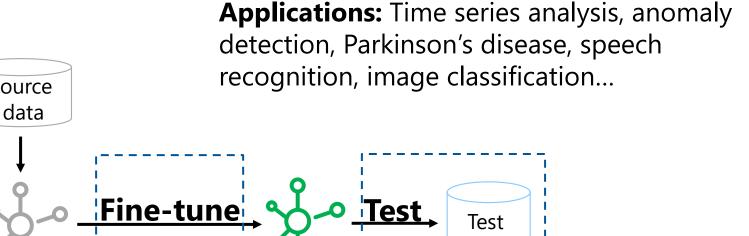
"Current systems are not as robust to changes in distribution as humans, who can quickly adapt to such changes with very few examples"

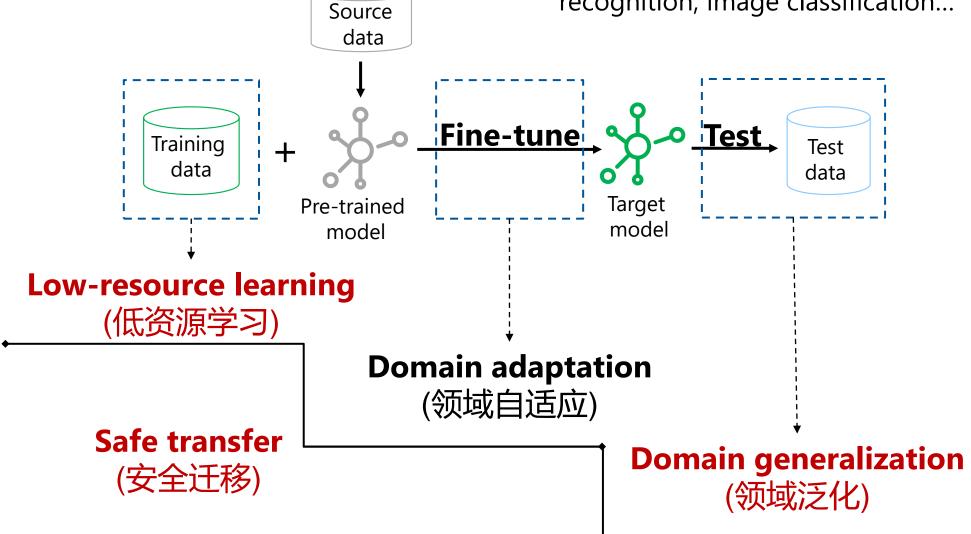
Yoshua Bengio, Geoffrey Hinton, Yann Lecun Deep learning for AI Com. ACM 2021



Statements from *Turing Award* winners in 2021

#### Roadmap





## Contents

#### • 1. Low-resource learning

- 1.2 *Algorithm:* Curriculum pseudo labeling for low-resource learning (NeurIPS'21)
- 1.2 *Application*: Cross-lingual low-resource speech recognition (TASLP'22)
- $\cdot$  2. Domain generalization
  - · 2.1 *Algorithm*: Generalized representation learning (CIKM'21)
  - 2.2 *Application*: Anomaly detection (TKDE'22)
- · 3. Safe transfer learning
  - 3.1 *Algorithm:* Safe transfer learning by relevant model slicing (ICSE'22)
  - 3.2 *Application:* Federated learning for healthcare
- $\cdot$  4. Conclusions

#### Low-resource Learning

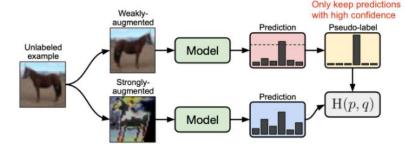
- · Research background
  - $\cdot$  Learn a generalized model by relying on a small amount of labeled data
- $\cdot$  Problem
  - $\cdot$  How to guarantee that knowledge can seamlessly transfer from labeled to unlabeled data?
  - Transfer criterion: a *fixed* threshold by Google's FixMatch<sup>[NeurlPS'20]</sup>

$$\frac{1}{\mu B} \sum_{b=1}^{\mu B} \mathbb{1}(\max(p_m(y|\omega(u_b))) > \tau) H(\hat{p}_m(y|\omega(u_b)), p_m(y|\Omega(u_b)))$$

- $\cdot$  Research challenge
  - Is the pre-defined fixed threshold for semi-supervised learning enough?
  - · Can design better thresholding for semi-supervised learning?

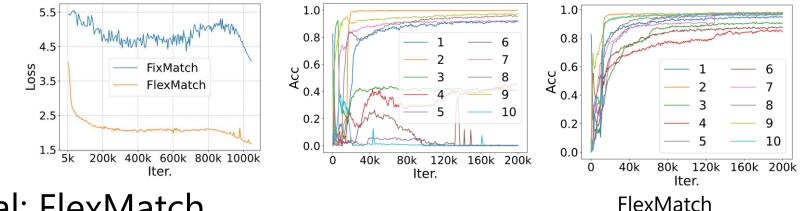


Labeled class +1
Labeled class -1
Unlabeled samples



#### Low-resource learning

- $\cdot$  Fixed vs. flexible threshold
  - $\cdot\,$  We should learn different thresholds for different classes

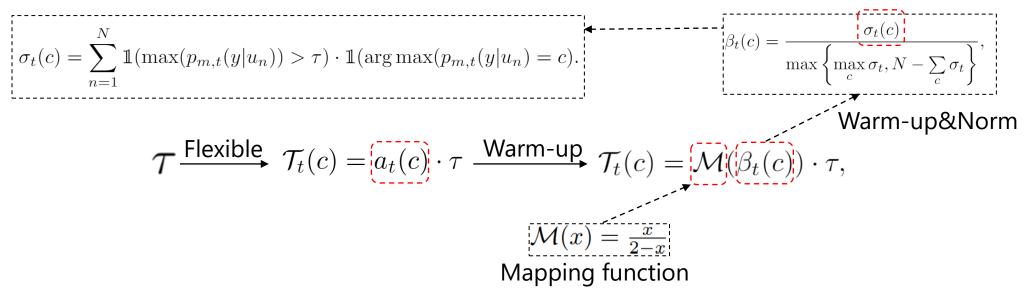


- · Our proposal: FlexMatch
  - · Different for different classes  $\rightarrow$  per-class *adaptation*
  - · Lower down thresholds for hard-to-learn classes  $\rightarrow$  encourage *difficult* classes
  - · Raise thresholds if already well-learned  $\rightarrow$  keep strict to ensure final acc
  - · Dynamically adjusted for every class at every time step  $\rightarrow$  automate the process

#### Low-resource learning: FlexMatch

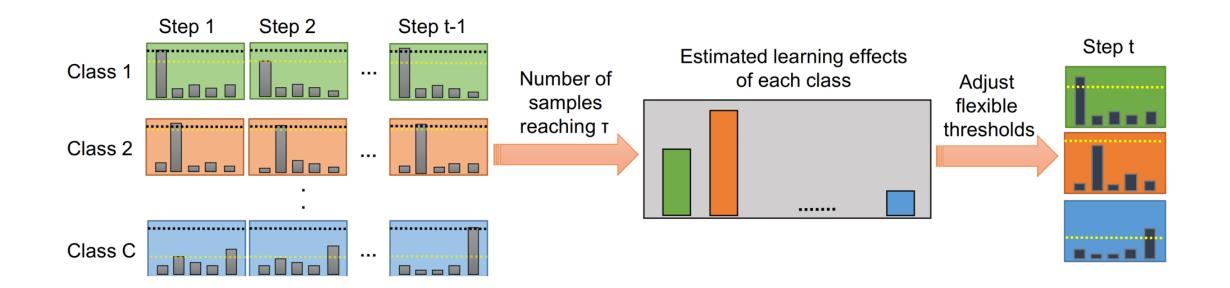
#### · Technical details

- A *curriculum pseudo labeling (CPL)* strategy that gradually learn the difficulties of classes
- Cluster assumption: The learning effect of a class can be reflected by the number of samples whose predictions fall above the high fixed threshold and into this class.



## Method: CPL

• Curriculum Pseudo Labeling (CPL)



#### Results

| Dataset               | CIFAR-10                                                              |                                                                                                               |                                                                            |                                                                                   | CIFAR-100                                                              |                                                                                                |                          | STL-10                                                                 | SVHN                                                                                               |                                                                                                      |                                                               |
|-----------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Label Amount          | 40                                                                    | 250                                                                                                           | 4000                                                                       | 400                                                                               | 2500                                                                   | 10000                                                                                          | 40                       | 250                                                                    | 1000                                                                                               | 40                                                                                                   | 1000                                                          |
| PL<br>Flex-PL         | $74.61{\scriptstyle\pm 0.26} \\ \textbf{73.74}{\scriptstyle\pm 1.96}$ | $\begin{array}{c} 46.49 {\scriptstyle \pm 2.20} \\ \textbf{46.14} {\scriptstyle \pm 1.81} \end{array}$        | $15.08{\scriptstyle\pm0.19} \\ 14.75{\scriptstyle\pm0.19}$                 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                            | $57.74{\scriptstyle\pm0.28} \\ \textbf{56.12}{\scriptstyle\pm0.51} \\$ | $\begin{array}{c} 36.55{\scriptstyle\pm0.24}\\ \textbf{35.60}{\scriptstyle\pm0.15}\end{array}$ | 74.68±0.99<br>73.42±2.19 | $55.45{\scriptstyle\pm2.43} \\ \textbf{52.06}{\scriptstyle\pm2.50} \\$ | $32.64{\scriptstyle\pm0.71}\atop\textbf{32.05}{\scriptstyle\pm0.37}$                               | $\frac{64.61 \pm 5.60}{63.21 \pm 3.64}$                                                              | $9.40{\scriptstyle\pm 0.32} \\ 12.05{\scriptstyle\pm 0.54}$   |
| UDA<br>Flex-UDA       | 10.62±3.75<br>5.44±0.52                                               | $5.16 \pm 0.06$<br>$5.02 \pm 0.07$                                                                            | $\begin{array}{c} 4.29 {\pm} 0.07 \\ \textbf{4.24} {\pm} 0.06 \end{array}$ | 46.39±1.59<br>45.17±1.88                                                          | $27.73{\scriptstyle\pm 0.21} \\ \textbf{27.08}{\scriptstyle\pm 0.15}$  | $22.49{\scriptstyle\pm 0.23} \\ \textbf{21.91}{\scriptstyle\pm 0.10}$                          | 37.42±8.44<br>29.53±2.10 | $9.72{\scriptstyle\pm1.15} \\ \textbf{9.03}{\scriptstyle\pm0.45}$      | $\begin{array}{c} 6.64{\scriptstyle \pm 0.17} \\ \textbf{6.10}{\scriptstyle \pm 0.25} \end{array}$ | 5.12±4.27<br>3.42±1.51                                                                               | $\frac{1.89{\scriptstyle\pm0.01}}{2.02{\scriptstyle\pm0.05}}$ |
| FixMatch<br>FlexMatch | $7.47{\scriptstyle\pm 0.28} \\ \textbf{4.97}{\scriptstyle\pm 0.06}$   | $\begin{array}{c} \textbf{4.86} {\scriptstyle \pm 0.05} \\ \textbf{4.98} {\scriptstyle \pm 0.09} \end{array}$ | $\begin{array}{c} 4.21 {\pm} 0.08 \\ \textbf{4.19} {\pm} 0.01 \end{array}$ | $\begin{array}{c c} 46.42 \pm 0.82 \\ \hline \textbf{39.94} \pm 1.62 \end{array}$ | $28.03{\scriptstyle\pm 0.16} \\ \textbf{26.49}{\scriptstyle\pm 0.20}$  | $22.20{\scriptstyle\pm0.12}\\21.90{\scriptstyle\pm0.15}$                                       | 35.97±4.14<br>29.15±4.16 | $9.81{\scriptstyle \pm 1.04} \\ \textbf{8.23}{\scriptstyle \pm 0.39}$  | $\begin{array}{c} 6.25{\scriptstyle\pm0.33} \\ \textbf{5.77}{\scriptstyle\pm0.18} \end{array}$     | $\begin{array}{c} \textbf{3.81} {\scriptstyle \pm 1.18} \\ 8.19 {\scriptstyle \pm 3.20} \end{array}$ | <b>1.96</b> ±0.03<br>6.72±0.30                                |
| Fully-Supervised      |                                                                       | $4.62{\scriptstyle\pm}0.05$                                                                                   |                                                                            |                                                                                   | $19.30 {\pm}~0.09$                                                     |                                                                                                |                          | -                                                                      |                                                                                                    | 2.13±                                                                                                | 0.02                                                          |

- · Significant improvement with **limited labels.**
- Significant improvement with **complicated tasks**.
- Significant improvement on **convergence speed**.
- No new hyperparameter introduced.
- No additional computation introduced.
  - B. Zhang et al. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. NeurIPS 2021. <u>https://arxiv.org/abs/2110.08263</u>

Table 2: Error rate results onImageNet after  $2^{20}$  iterations.MethodTop-1Top-5FixMatch43.6621.80FlexMatch41.8519.48

### TorchSSL

· A unified Pytorch library for semi-supervised learning

#### https://github.com/TorchSSL/TorchSSL

**Supported algorithms**: In addition to fully-supervised (as a baseline), TorchSSL supports the following popular algorithms:

- 1. PiModel (NeurIPS 2015) [1]
- 2. MeanTeacher (NeurIPS 2017) [2]
- 3. PseudoLabel (ICML 2013) [3]
- 4. VAT (Virtual adversarial training, TPAMI 2018) [4]
- 5. MixMatch (NeurIPS 2019) [5]
- 6. UDA (Unsupervised data augmentation, NeurIPS 2020) [6]
- 7. ReMixMatch (ICLR 2019) [7]
- 8. FixMatch (NeurIPS 2020) [8]
- 9. FlexMatch (NeurIPS 2021) [9]

Besides, we implement our Curriculum Pseudo Labeling (CPL) method for Pseudo-Label (Flex-Pseudo-Label) and UDA (Flex-UDA).

Supported datasets: TorchSSL currently supports 5 popular datasets in SSL research:

- 1. CIFAR-10
- 2. CIFAR-100
- 3. STL-10
- 4. SVHN
- 5. ImageNet



#### Run the experiments

It is convenient to perform experiment with TorchSSL. For example, if you want to run FlexMatch algorithm:

- 1. Modify the config file in config/flexmatch/flexmatch.yaml as you need
- 2. Run python flexmatch.py --c config/flexmatch/flexmatch.yaml

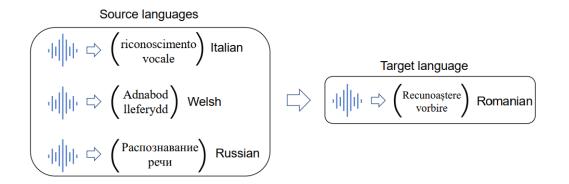
#### Customization

If you want to write your own algorithm, please follow the following steps:

- 1. Create a directory for your algorithm, e.g., SSL , write your own model file SS1/SSL.py in it.
- 2. Write the training file in SSL.py
- 3. Write the config file in config/SSL/SSL.yaml

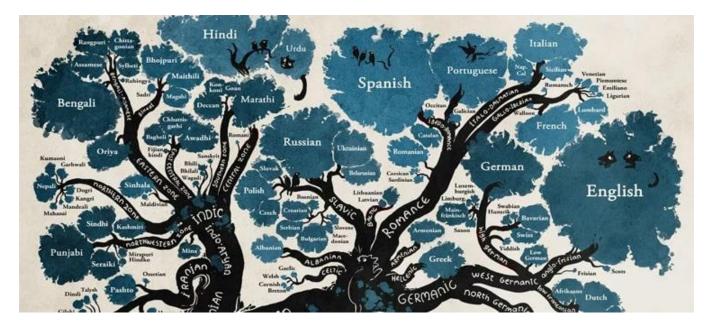
## **Application: speech recognition**

- Background
  - There are around **7,000** languages in the world, most of which do not have large amount of labelled data
  - Automatic speech recognition (ASR) for the low-resource languages remains a challenge for end-to-end (E2E) models
- $\cdot$  Existing methods
  - *Pre-training* on the rich-resource languages and fine-tuning on the low-resource languages
  - · Performing *multi-task learning* on rich- and low-resource languages simultaneously
  - *Meta-learning* on the rich-resource languages for rapid adaptation to the low-resource languages
- $\cdot$  Limitations
  - Low parameter-efficiency
    - Speech-Transformer models have huge amounts of parameters
  - Overfitting problem
    - Heavy models can get easily overfit on low-resource languages

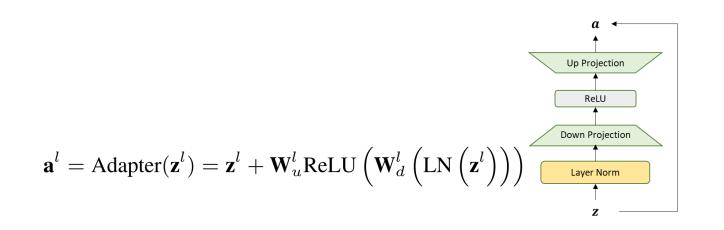


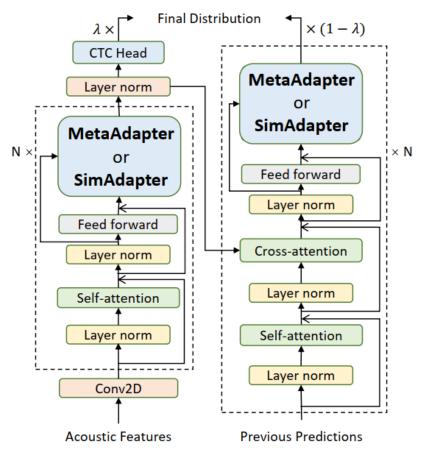
## Motivation

- $\cdot$  Learn the relationship between different languages
  - · Different languages have different vocabulary, but may share same representations
- $\cdot$  Relationship
  - $\cdot$  Implicit: make no assumptions on their relationship, use a network to learn it directly
  - · Explicit: assume languages have a linear relation, simplify the algorithm
- · Reduce overfitting
  - $\cdot$  Freeze most of the parameters
  - · Only tune a small part



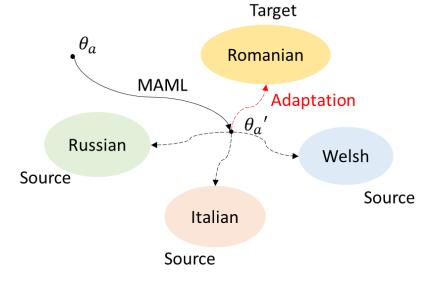
- Exploiting adapters for cross-lingual low-resource ASR
  - MetaAdapter: (implicit relationship)
    - $\cdot\,$  Directly learn the relationship between different languages
  - **SimAdapter**: (explicit relationship)
    - $\cdot\,$  Assume they have a linear relationship, learn it using attention
  - **SimAdapter+**: (implicit + explicit)
    - · Combine MetaAdapter and SimAdapter for better results





### MetaAdapter for Cross-lingual ASR

Motivation: obtain a proper initialization for fast adaptation



Algorithm 1 Learning algorithm of the MetaAdapter
Input: Rich-resource languages {S<sub>1</sub>, ..., S<sub>N</sub>}, low-resource task L<sub>T</sub>.
1: Train language-specific heads on source languages S<sub>i</sub>.
2: Initialize the MetaAdapter.
3: while meta-learning not done do
4: Optimizing the MetaAdapter using Eq. (6).
5: end while
6: Train the target head on target language L<sub>T</sub>.
7: Fine-tune the MetaAdapter using ASR loss Eq. (1).

- 8: return Cross-lingual ASR model.
- Pre-train the Adapters using Model-Agnostic Meta-Learning (MAML):

$$\theta_{a,i}' = \theta_a - \epsilon \nabla \mathcal{L}_{S_i^{tr}} (f_{\theta_a})$$
$$\mathcal{L}_{S_i^{val}} (f_{\theta_{a,i}'}) = \mathcal{L}_{S_i^{val}} \left( f_{\theta_a - \epsilon \nabla_{\theta_a} \mathcal{L}_{S_i^{tr}} (f_{\theta_a})} \right)$$
$$\theta_a = \theta_a - \mu \sum_{i=1}^N \nabla_{\theta_a} \mathcal{L}_{S_i^{val}} \left( f_{\theta_{a,i}'} \right)$$

#### SimAdapter for Cross-lingual ASR

- $\cdot$  Formulation
  - SimAdapter:

$$\begin{aligned} \operatorname{SimAdapter}(\mathbf{z}, \mathbf{a}_{\{S_1, S_2, \dots, S_N\}}) &= \sum_{i=1}^{N} \operatorname{Attn}(\mathbf{z}, \mathbf{a}_{S_i}) \cdot (\mathbf{a}_{S_i} \mathbf{W}_V) & \operatorname{Attn}(\mathbf{z}, \mathbf{a}) = \operatorname{Softmax}\left(\frac{(\mathbf{z} \mathbf{W}_Q)(\mathbf{a} \mathbf{W}_K)^{\top}}{\tau}\right) \\ \text{Stability regularization:} \quad \mathcal{L}_{\operatorname{reg}} &= \sum_{i,j} \left( (\mathbf{I}_V)_{i,j} - (\mathbf{W}_V)_{i,j} \right)^2 & \operatorname{AF}_A \end{aligned}$$

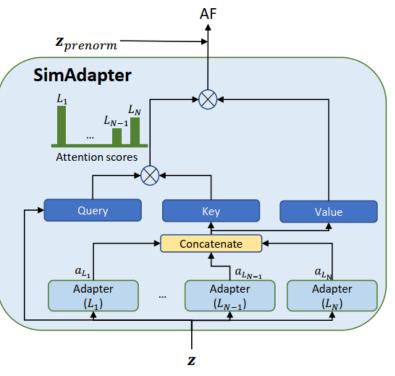
- Fusion-guide loss:
  - Encourage the model to focus on the corresponding adapters for the

$$\mathcal{L}_{\text{guide}}^{f} = -\frac{1}{K \times S} \sum_{s=1}^{S} \sum_{k=1}^{K} \log \alpha_{f,k}^{s},$$

Algorithm 2 Learning algorithm of SimAdapter

**Input**: Rich-resource languages  $\{S_1, \dots, S_N\}$ , low-resource task  $L_T$ .

- 1: Train language-specific heads on the source languages  $S_i$  and the target language.
- 2: Train Adapters  $A_t$  on top of language-specific heads.
- 3: Initialize SimAdapter layers.
- 4: while not done do
- 5: Optimizing SimAdapter layers using Eq. (12).
- 6: end while
- 7: return Target ASR model.



#### **Experiment Results**

#### · Main results

| Target Language  | Hybrid DNN/HMM | Transformer | Head  | Full-FT | Adapter | SimAdapter | MetaAdapter | SimAdapter + |
|------------------|----------------|-------------|-------|---------|---------|------------|-------------|--------------|
| Romanian (ro)    | 70.14          | 97.25       | 63.98 | 53.90   | 48.34   | 47.37      | 44.59       | 47.29        |
| Czech (cs)       | 63.15          | 48.87       | 75.12 | 34.75   | 37.93   | 35.86      | 37.13       | 34.72        |
| Breton (br)      | -              | 97.88       | 82.80 | 61.71   | 58.77   | 58.19      | 58.47       | 59.14        |
| Arabic (ar)      | 69.31          | 75.32       | 81.70 | 47.63   | 47.31   | 47.23      | 46.82       | 46.39        |
| Ukrainian (uk)   | 77.76          | 64.09       | 82.71 | 45.62   | 50.84   | 48.73      | 49.36       | 47.41        |
| Average          | -              | 76.68       | 77.26 | 48.72   | 48.64   | 47.48      | 47.27       | 46.99        |
| Weighted Average | -              | 72.28       | 77.54 | 46.72   | 47.38   | 46.08      | 46.12       | 45.45        |

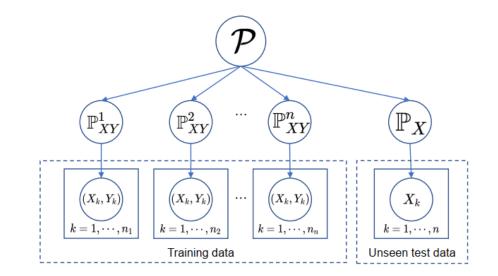
• Impact of adapter training strategies

| Target    | Joint | +SimAdapter | Two-stage | +SimAdapter |
|-----------|-------|-------------|-----------|-------------|
| ro        | 52.92 | 53.88       | 48.34     | 47.37       |
| cs        | 39.16 | 36.79       | 37.93     | 35.86       |
| br        | 65.10 | 63.37       | 58.77     | 58.19       |
| ar        | 50.53 | 49.31       | 47.31     | 47.23       |
| uk        | 52.27 | 48.84       | 50.84     | 48.73       |
| Average   | 52.00 | 50.44       | 48.64     | 47.48       |
| +Weighted | 50.35 | 48.57       | 47.38     | 46.08       |

Hou et al. Exploiting Adapters for Cross-lingual Low-resource Speech Recognition. TASLP 2022. <u>https://arxiv.org/abs/2105.11905</u>

## **Domain generalization**

- $\cdot$  Research background
  - Leverage multiple training distributions to learn a generalized model on *unseen* domains
- $\cdot$  Problem
  - · Data properties are dynamically changing over time
  - · Leading to dynamic distribution change
- · Research challenge
  - How to capture the dynamical distribution change?
  - $\cdot$  E.g., how to quantify the distributions in time series?



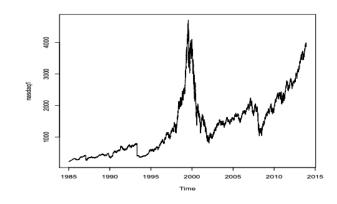
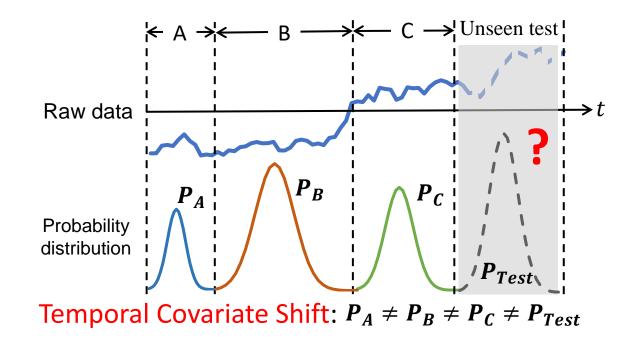


Figure 1.3: Plot of daily closing price of Nasdaq 1985-2014

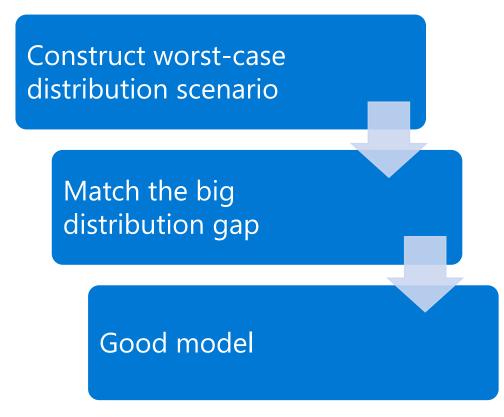
 Wang et al. Generalizing to unseen domains: a survey on domain generalization. IJCAI 2021 survey track. <u>https://arxiv.org/abs/2103.03097</u>

#### **Domain generalization**

- Our proposal: AdaRNN (adaptive RNNs)
  - Formulate the problem as **Temporal Covariate Shift (TCS)**
  - $\cdot\,$  Design a framework to solve TCS in continuous data

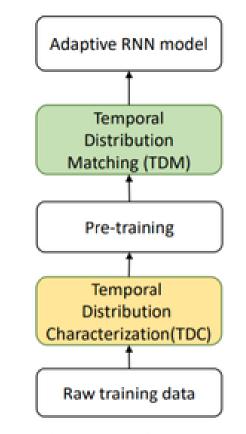


## How to solve TCS?



#### AdaRNN: Adaptive RNNs

<u>Temporal Distribution Characterization</u>: characterizing the distribution information in original TS <u>Temporal Distribution Matching</u>: build a temporally-invariant model



(a) Overview of ADARNN

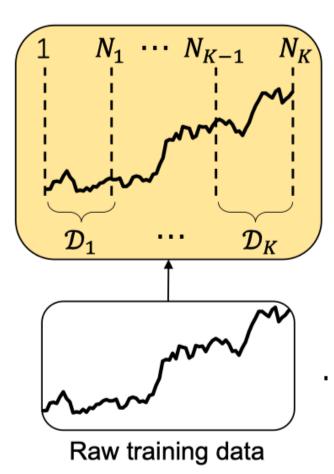
## **Temporal Distribution Characterization**

#### $\cdot$ TDC

- Find the *K* most dissimilar segments
- How to define similarity?
  - · Distribution distance D
- Why most dissimilar segments?
  - $\cdot\,$  Diverse distribution information helps generalization
- $\cdot$  Objective

$$\max_{0 < K \le K_0} \max_{N_1, \dots, N_K} \frac{1}{K} \sum_{1 \le i \ne j \le K} D(\mathcal{D}_i, \mathcal{D}_j)$$
  
s.t.  $\forall i, \Delta_1 < N_i < \Delta_2; \sum_{i=1}^K N_i = N,$ 

$$\max \frac{1}{K} \sum_{i,j} D(\mathcal{D}_i, \mathcal{D}_j)$$



It is similar to a dynamic programming problem, but we solve it using greedy algorithm for efficiency.

## **Temporal Distribution Matching**

- $\cdot$  Plain method
  - · A plain domain generalization (DG) problem with K domains

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^{K} \mathcal{L}_{pred}(\mathbf{y}_i, \hat{\mathbf{y}}_i) + \lambda \sum_{1 \le i, j \le K} D(\mathcal{D}_i, \mathcal{D}_j)$$

- $\cdot\,$  Plain DG ignores the importance of each hidden representation's distribution
- $\cdot$  TDM
  - $\cdot \,$  Our solution: an adaptive weight matrix for each hidden state

$$\theta^*, \boldsymbol{\alpha}^* = \arg\min_{\theta, \boldsymbol{\alpha}} \mathcal{L}_{pred}(\theta) + \lambda \sum_{1 \le i, j \le K} \mathcal{L}_{tdm}(\mathbf{H}_i, \mathbf{H}_j; \boldsymbol{\alpha}_{i, j}, \theta)$$
$$\mathcal{L}_{tdm}(\mathbf{H}_i, \mathbf{H}_j) = \sum_{t=1}^T \alpha_{i, j}^t D(\mathbf{h}_i^t, \mathbf{h}_j^t)$$

## **Temporal Distribution Matching (Cont.)**

#### • How to learn the weight matrix?

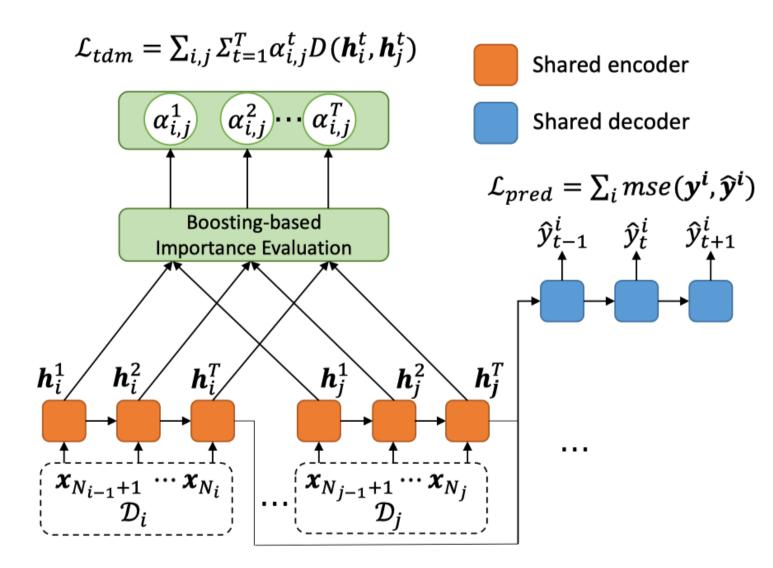
- · A naïve way of attention layer will fail since:
  - At early stage, the hidden state representations learned by  $\theta$  are less meaningful, which will result in insufficient learning of weights
  - $\cdot$  Network can easily get stuck since it is very complex and time-consuming
- $\cdot$  Our solution
  - A boosting-based importance evaluation

$$\alpha_{i,j}^{t,(n+1)} = \begin{cases} \alpha_{i,j}^{t,(n)} \times G(d_{i,j}^{t,(n)}, d_{i,j}^{t,(n-1)}) & d_{i,j}^{t,(n)} \ge d_{i,j}^{t,(n-1)} \\ \alpha_{i,j}^{t,(n)} & \text{otherwise} \end{cases}$$

where

$$G(d_{i,j}^{t,(n)}, d_{i,j}^{t,(n-1)}) = (1 + \sigma(d_{i,j}^{t,(n)} - d_{i,j}^{t,(n-1)}))$$

#### **Temporal Distribution Matching (Cont.)**



#### Results

| Method        | ACC   | Р     | R     | F1    | AUC   |
|---------------|-------|-------|-------|-------|-------|
| LightGBM      | 84.11 | 83.73 | 83.63 | 84.91 | 90.23 |
| GRU           | 85.68 | 85.62 | 85.51 | 85.46 | 91.33 |
| MMD           | 86.39 | 86.80 | 86.26 | 86.38 | 91.77 |
| DANN          | 85.88 | 85.59 | 85.62 | 85.56 | 91.41 |
| AdaRNN (Adv.) | 87.31 | 87.19 | 87.18 | 87.17 | 92.32 |
| AdaRNN (Cos.) | 88.44 | 88.71 | 88.59 | 88.63 | 93.19 |

Table 2: Results on UCI time series classification dataset

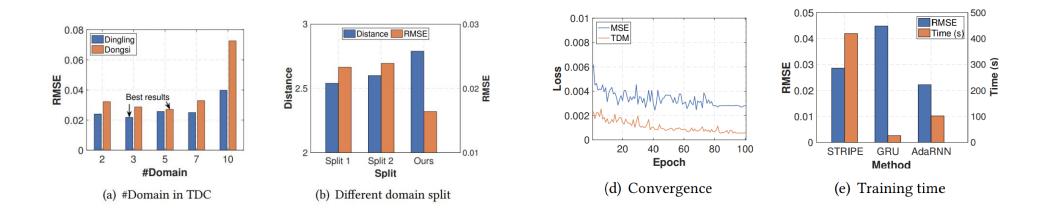
| Method   | IC    | ICIR  | RankIC | RankICIR | RawIC | RawICIR |
|----------|-------|-------|--------|----------|-------|---------|
| LightGBM | 0.063 | 0.551 | 0.056  | 0.502    | 0.064 | 0.568   |
| STRIPE   | 0.108 | 0.987 | 0.101  | 0.946    | 0.109 | 0.993   |
| GRU      | 0.106 | 0.965 | 0.098  | 0.925    | 0.109 | 0.986   |
| MMD      | 0.107 | 0.962 | 0.101  | 0.926    | 0.108 | 0.967   |
| AdaRNN   | 0.115 | 1.071 | 0.110  | 1.035    | 0.116 | 1.077   |

Table 3: Results on stock price prediction

|                  | Doi<br>RMSE | ngsi<br>MAE | Tiaı<br>RMSE | ntan<br>MAE | Nongzh<br>RMSE | anguan<br>MAE | Ding<br>RMSE | gling<br>MAE | Δ(%)   | Electric Power |
|------------------|-------------|-------------|--------------|-------------|----------------|---------------|--------------|--------------|--------|----------------|
| FBProphet [10]   | 0.1866      | 0.1403      | 0.1434       | 0.1119      | 0.1551         | 0.1221        | 0.0932       | 0.0736       | -      | 0.080          |
| ARIMA            | 0.1811      | 0.1356      | 0.1414       | 0.1082      | 0.1557         | 0.1156        | 0.0922       | 0.0709       | -      | -              |
| GRU              | 0.0510      | 0.0380      | 0.0475       | 0.0348      | 0.0459         | 0.0330        | 0.0347       | 0.0244       | 0.00   | 0.093          |
| MMD-RNN          | 0.0360      | 0.0267      | 0.0183       | 0.0133      | 0.0267         | 0.0197        | 0.0288       | 0.0168       | -61.31 | 0.082          |
| DANN-RNN         | 0.0356      | 0.0255      | 0.0214       | 0.0157      | 0.0274         | 0.0203        | 0.0291       | 0.0211       | -59.97 | 0.080          |
| LightGBM         | 0.0587      | 0.0390      | 0.0412       | 0.0289      | 0.0436         | 0.0319        | 0.0322       | 0.0210       | -11.08 | 0.080          |
| LSTNet [23]      | 0.0544      | 0.0651      | 0.0519       | 0.0651      | 0.0548         | 0.0696        | 0.0599       | 0.0705       | -      | 0.080          |
| Transformer [45] | 0.0339      | 0.0220      | 0.0233       | 0.0164      | 0.0226         | 0.0181        | 0.0263       | 0.0163       | -61.20 | 0.079          |
| STRIPE [24]      | 0.0365      | 0.0216      | 0.0204       | 0.0148      | 0.0248         | 0.0154        | 0.0304       | 0.0139       | -64.60 | 0.086          |
| AdaRNN           | 0.0295      | 0.0185      | 0.0164       | 0.0112      | 0.0196         | 0.0122        | 0.0233       | 0.0150       | -73.57 | 0.077          |

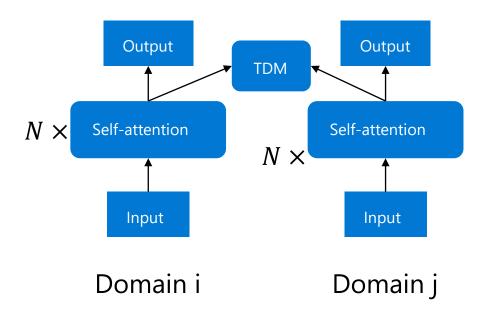
## Analysis

- · Segment number matters!
  - · Different numbers of segments reflect different distribution information
- $\cdot\,$  Our TDC algorithm give the best segmentation results
  - · Better than random split and reverse
- $\cdot$  Convergence
  - · Our method can converge within a few iterations
- $\cdot$  Training time
  - $\cdot$  Our method will not bring significant computational burden and even more efficient than SOTA



### One more thing: Extension to Transformer

- $\cdot$  The structure can also apply to Transformers...
  - AdaTransformer: Adaptive Transformer



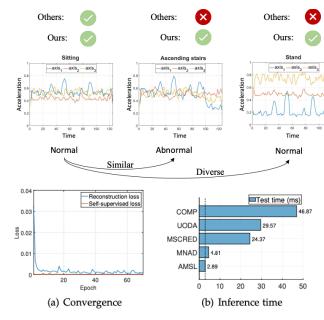
| Method              | Station 1 | Station 2 |
|---------------------|-----------|-----------|
| Vanilla Transformer | 0.028     | 0.035     |
| AdaTransformer      | 0.025     | 0.030     |

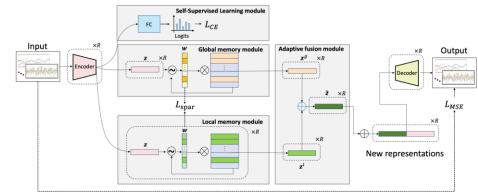
We did not tune hyperparameters heavily; better results will come if you tune them carefully Research on transformer is left for future work.

 Du et al. AdaRNN: adaptive learning and forecasting for time series. CIKM 2021. <u>https://arxiv.org/abs/2108.04443</u>

#### **Application to anomaly detection**

- · AMSL: adaptive memory network with self-supervised learning
  - · Limited normal data: lack of representation patterns  $\rightarrow$  Self-supervised learning
  - · Unseen abnormal data: needs to learn from normal data  $\rightarrow$  adaptive memory network
  - · 2-5% improvement over best baselines
  - · Efficient and simple to implement





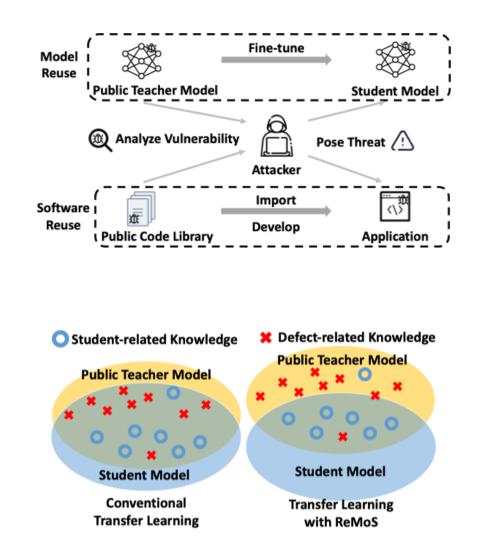
🛶 : Forward operation 🛶 : Loss operation 😔 : Similarity calculation ⊗ : Matrix multiplication 🕀 : Concatenation 🕀 : Adaptive fusion

| Method             | DSADS dataset |        |               |        | PAMAP2 dataset |        |        | WESAD dataset |        |        | CAP dataset |        |        |        |        |        |
|--------------------|---------------|--------|---------------|--------|----------------|--------|--------|---------------|--------|--------|-------------|--------|--------|--------|--------|--------|
|                    | mPre          | mRec   | mF1           | Acc    | mPre           | mRec   | mF1    | Acc           | mPre   | mRec   | mF1         | Acc    | mPre   | mRec   | mF1    | Acc    |
| Kernel PCA [11]    | 0.6184        | 0.6182 | 0.6183        | 0.6186 | 0.7236         | 0.6579 | 0.6892 | 0.5645        | 0.5496 | 0.5495 | 0.5495      | 0.5486 | 0.7603 | 0.5847 | 0.6611 | 0.5892 |
| ABOD [50]          | 0.6880        | 0.6510 | 0.6690        | 0.6554 | 0.8653         | 0.9022 | 0.8834 | 0.8985        | 0.8782 | 0.8786 | 0.8784      | 0.8783 | 0.7867 | 0.6365 | 0.7037 | 0.6326 |
| OCSVM [15]         | 0.7608        | 0.7277 | 0.7439        | 0.7312 | 0.7600         | 0.7204 | 0.7397 | 0.7679        | 0.6092 | 0.5631 | 0.5852      | 0.5518 | 0.9267 | 0.9259 | 0.9263 | 0.9257 |
| HMM [51]           | 0.6959        | 0.6917 | 0.6937        | 0.6901 | 0.6950         | 0.6553 | 0.6745 | 0.5725        | 0.6123 | 0.6060 | 0.6097      | 0.6018 | 0.8238 | 0.8078 | 0.8157 | 0.8090 |
| CNN-LSTM [52]      | 0.6845        | 0.6270 | 0.6545        | 0.6425 | 0.6680         | 0.5392 | 0.5968 | 0.6131        | 0.5883 | 0.5440 | 0.5653      | 0.5318 | 0.6159 | 0.5217 | 0.5649 | 0.5762 |
| LSTM-AE [8]        | 0.8471        | 0.7729 | 0.8083        | 0.7852 | 0.8619         | 0.7997 | 0.8296 | 0.8426        | 0.2353 | 0.4762 | 0.3150      | 0.4599 | 0.7147 | 0.6253 | 0.6671 | 0.6286 |
| MSCRED [9]         | 0.7540        | 0.5602 | 0.6428        | 0.6192 | 0.6997         | 0.7301 | 0.7146 | 0.7517        | 0.8850 | 0.8124 | 0.8471      | 0.8420 | 0.6410 | 0.5784 | 0.6081 | 0.5819 |
| ConvLSTM-AE [16]   | 0.8164        | 0.6951 | 0.7509        | 0.7121 | 0.7359         | 0.7361 | 0.7360 | 0.7341        | 0.9733 | 0.9698 | 0.9716      | 0.9709 | 0.8150 | 0.8194 | 0.8172 | 0.8165 |
| ConvLSTM-COMP [16] | 0.8229        | 0.7379 | 0.7781        | 0.7518 | 0.8844         | 0.8842 | 0.8843 | 0.8844        | 0.9626 | 0.9629 | 0.9627      | 0.9619 | 0.8367 | 0.8377 | 0.8372 | 0.8394 |
| BeatGAN [53]       | 0.9517        | 0.5663 | 0.7100        | 0.7818 | 0.7981         | 0.7420 | 0.7691 | 0.8369        | 0.7586 | 0.5000 | 0.6027      | 0.5172 | 0.5251 | 0.5002 | 0.5123 | 0.8437 |
| MNAD-P [43]        | 0.5816        | 0.5783 | 0.5799        | 0.5721 | 0.8198         | 0.8176 | 0.8186 | 0.8135        | 0.7600 | 0.6938 | 0.7254      | 0.6849 | 0.7742 | 0.7489 | 0.7613 | 0.6960 |
| MNAD-R [43]        | 0.8337        | 0.7694 | 0.8003        | 0.7811 | 0.8350         | 0.8355 | 0.8353 | 0.8334        | 0.7426 | 0.6677 | 0.7031      | 0.6579 | 0.8189 | 0.8235 | 0.8212 | 0.7871 |
| GDN [54]           | 0.8706        | 0.8151 | 0.8419        | 0.8251 | 0.8129         | 0.8104 | 0.8116 | 0.8123        | 0.7520 | 0.5434 | 0.6309      | 0.5590 | 0.6831 | 0.6237 | 0.6520 | 0.6569 |
| UODA [23]          | <u>0.8679</u> | 0.8281 | <u>0.8475</u> | 0.8365 | 0.8957         | 0.8513 | 0.8730 | 0.8823        | 0.7623 | 0.6314 | 0.6907      | 0.6191 | 0.7557 | 0.5124 | 0.6107 | 0.5173 |
| AMSL (Ours)        | 0.9407        | 0.9298 | 0.9352        | 0.9332 | 0.9788         | 0.9713 | 0.9750 | 0.9770        | 0.9953 | 0.9949 | 0.9951      | 0.9951 | 0.9771 | 0.9736 | 0.9753 | 0.9756 |
| Improvement        | 7.28%         | 10.17% | 8.77%         | 9.67%  | 9.44%          | 8.71%  | 9.07%  | 9.26%         | 2.20%  | 2.51%  | 2.35%       | 2.42%  | 5.04%  | 4.77%  | 4.90%  | 4.99%  |

Y. Zhang, J. Wang#, Y. Chen, H. Yu, T. Qin. Adaptive Memory Networks with Self-supervised Learning for Unsupervised Anomaly Detection. IEEE TKDE 2022.

## Safe transfer learning

- $\cdot$  Motivation
  - $\cdot\,$  Software reuse is popular in software engineering  $\rightarrow\,$  wide usage of pretrained models in ML
  - Malicious program/code cause damage → Fine-tuned models can inherit vulnerabilities from PT. models
  - The defects can easily be propagated from the teacher to the students, with the inheritance rate ranging from 52.58% to 97.85%
- $\cdot$  Research question
  - · Reducing the defect inheritance of PT model, while
  - · Preserving its benefits (e.g., performance)
- $\cdot$  Challenges
  - · Attack is unknown
  - · DNN models are diverse and lack of interpretability

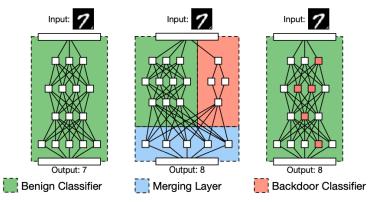


### Background: DNN model attack

- · DNN models are not safe:
  - · Adversarial attack: Obtain adversarial examples using adversarial training to fool the model [1]



Backdoor attack: Hidden malicious logic is injected into the model purposely <sup>[2]</sup>

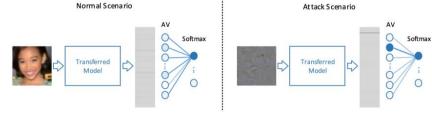


| Task  |               | Defect Type                     | Inheritance Rate |
|-------|---------------|---------------------------------|------------------|
|       | Adversarial   | Penultimate-Layer Guided [51]   | 58.01%           |
| CV    | Vulnerability | Neuron-Coverage Guided [21, 48] | 52.58%           |
|       | Backdoor      | Latent Data Poisoning [62]      | 72.91%           |
|       | Adversarial   | Greedy Word Swap [31]           | 64.86%           |
| NLP   | Vulerability  | Word Importance Ranking [29]    | 94.73%           |
| NLP - | Backdoor      | Data Poisoning [20]             | 96.72%           |
|       | Backdoor      | Weight Poisoning [32]           | 97.85%           |

https://towardsdatascience.com/adversarial-attacks-in-machine-learning-and-how-to-defend-against-them-a2beed95f49c
 Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. arXiv 1708.06733.

#### **Related work**

- · Can transfer learning models be attacked? Yes!
  - Given several target images and pretrained model, we can attack it by perturbing the input student images <sup>[Wang et al.'18]</sup>
  - Generate salient features, then perturb the inputs [Ji et al.'18]
  - Softmax layer is easy to attack [Rezaei et al.'20]
- $\cdot$  How to defend?
  - · Train from scratch: best defense, worst performance
  - Fine-tune: worst defense, best performance
  - · Fix-after-transfer
    - $\cdot\,$  fine-tune, then use defense: expensive and poor effectiveness due to small data
  - $\cdot$  Fix-before-transfer: randomly initialize the student, then extract teacher knowledge
    - Renofeation <sup>[Chin et al.'21]</sup>: add dropout, feature regularization, and stochastic weight average; not end-to-end
  - [Wang et al.'18] Wang B, Yao Y, Viswanath B, et al. With great training comes great vulnerability: Practical attacks against transfer learning. USENIX Security'18.
  - [Ji et al.'18] Ji Y, Zhang X, Ji S, et al. Model-reuse attacks on deep learning systems. CCS'18.
  - [Rezaei et al.'20] Rezaei S, Liu X. A target-agnostic attack on deep models: Exploiting security vulnerabilities of transfer learning. ICLR'20.
  - [Chin et al.'21] Chin et al. Renofeation: A Simple Transfer Learning Method for Improved Adversarial Robustness. CVPR'21 workshop.



#### · ReMoS: Relevant Model Slicing

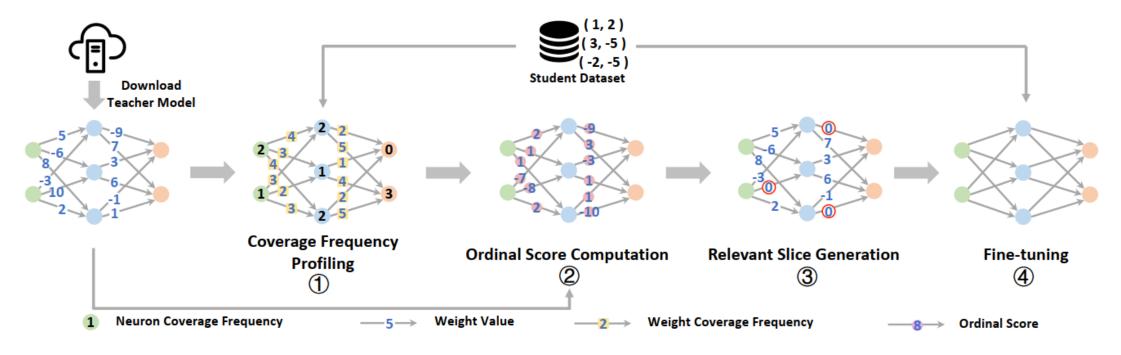
- Given a DNN model *M* and a target domain dataset *D*, ReMoS is to compute a <u>subset</u> of model <u>weights</u> that are more relevant (bounded by a threshold) to the inference of samples in *D* and less relevant to the samples outside *D*.
- · Relevant slicing: from traditional software engineering
- Assumption:
  - · Pre-trained model as a white-box (i.e., architecture and weights)
  - · Target dataset for student task
- Formulation:

$$\max_{\mathbf{w} \subset \mathbf{w}^T} \sum_{(x,y) \in D^S} \mathbb{I}[f(x; T(\mathbf{w})) = y] + \mathbb{I}[f(\tilde{x}; T(\mathbf{w})) = y)]$$

|                                                                   | 3.7                                             |  |
|-------------------------------------------------------------------|-------------------------------------------------|--|
| 1 read( a, b )<br>2 int x=0, y=0<br>3 x = a + 1                   | 1 read( a, b )<br>2 int x=0, y=0<br>3 x = a + 1 |  |
| 4 y = b + 1<br>5 int w = 0<br>6 if x > 3 then<br>7 if y > -3 then | 4<br>5 int w = 0<br>6 if x > 3 then             |  |
| 8 w = w / b<br>9 endif<br>10 endif                                | ,<br>8<br>9<br>10 endif                         |  |
| 11 if y > 5 then<br>12 w = w + 1<br>13 endif                      | 11 if y > 5 then<br>12 w = w + 1<br>13 endif    |  |
| 14 write( w )                                                     | 14 write( w )                                   |  |

#### $\cdot$ ReMoS

- Coverage frequency profiling: compute coverage frequency of each weight → support of student task
- Ordinal score computation: compute score of each weight based on teacher weight and coverage frequency
- Relevant slice generation: identify the relevant weights
- Fine-tuning: vanilla fine-tune



- · Coverage frequency profiling
  - · Neuron coverage: find the neuron whose activation value is large than a threshold  $\alpha$

$$\operatorname{Cov}(x) = \operatorname{Cov}(\operatorname{Run}(M, x)) = \operatorname{Cov}(\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_K\})$$
$$= \{\mathbf{v}_i | \mathbf{v}_i = \mathbb{I}[\mathbf{h}_i > \alpha]\}.$$

• On dataset  $D^S$ 

$$\operatorname{Cov}(D^S) = \{\sum_{x \in D^S} \operatorname{Cov}(x)_i | i = 2, 3, \cdots, K\}$$

- Weight coverage:
  - $\cdot$  Sum of the neuron coverage frequency of two neurons that this weight connects

$$\operatorname{CovW}(D^S)_{k,i,j} = \operatorname{Cov}(D^S)_{k-1,i} + \operatorname{Cov}(D^S)_{k,j}$$

- $\cdot$  Ordinal score computation
  - $\cdot$  Formulation:

$$\mathbf{w}^{ReMoS} = \underset{\mathbf{w} \subset \mathbf{w}^T}{\arg \max} ACC(T(\mathbf{w}), D^S) - \sum_{w \in \mathbf{w}} |w|$$

 $\cdot$  To unify the value range

$$ord\_mag_{k,i,j} = rank(|w_{k,i,j}|),$$
  

$$ord\_cov_{k,i,j} = rank(CovW(D^{S})_{k,i,j})$$
  

$$ord_{k,i,j} = ord\_cov_{k,i,j} - ord\_mag_{k,i,j}$$

- Relevant slice generation
  - · Identify which weights should be included based on ordinal scores ( $t_{\theta}$  is the slice size, not value size)  $slice(D^{S}) = \{w_{k,i,j} | ord_{k,i,j} > t_{\theta}\}$

- $\cdot$  Fine-tune
  - Traditional fine-tune
- Weights inside  $slice(D^S)$ : Fine-tune from teacher Weights outside  $slice(D^S)$ : Random initialization

- $\cdot$  Advantage
  - · Less computation overhead: only *forward-pass* using the student dataset once
  - No need to know the student task in advance
  - Agnostic to DNN architectures

#### Experiments

- $\cdot$  Research questions to be answered
  - Defect mitigation effectiveness
    - · Performance sacrifice vs. defect mitigation
  - · Generalizability
    - Generalize to different tasks (CV and NLP)
  - $\cdot$  Efficiency
    - How much time does it cost compared to traditional transfer learning
  - · Interpretability
    - Why is ReMoS effective? What does the student model look like?

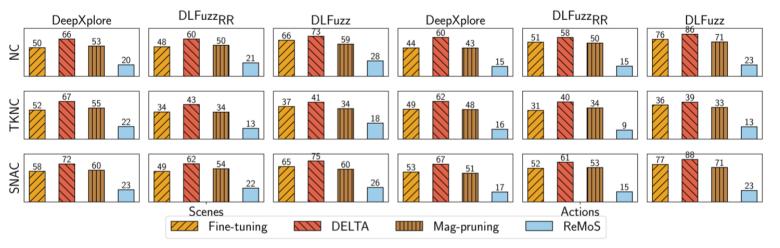
## Effectiveness

- $\cdot$  CV results
  - $\cdot$  Better ACC
  - · Lower DIR

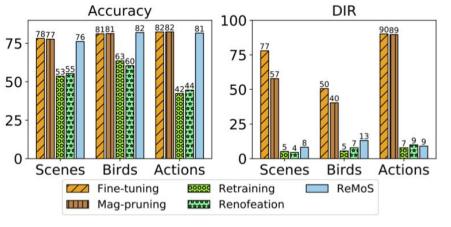
ReMoS only sacrifices less than 2% model accuracy and reduces over 75% inherited defects than the conventional fine-tuning



Adversarial attack



Neuron coverage attack



Backdoor attack

#### Effectiveness

#### • NLP results

- · Defect is more severe in NLP
- Ours is significantly better
- ReMoS reduces 50% to 61% DIR, only sacrificing 3% acc at most

| Model      | Dataset       |                   | Fine-tune | Mag-prune | ReMoS |
|------------|---------------|-------------------|-----------|-----------|-------|
|            | CCT O         | ACC               | 92.20     | 93.43     | 92.03 |
| DEDT       | SST-2         | DIR               | 85.30     | 67.70     | 62.23 |
| BERT       |               | ACC               | 89.42     | 88.84     | 88.45 |
|            | QNLI          | DIR               | 74.94     | 62.11     | 45.16 |
|            | SST-2         | ACC               | 94.40     | 94.06     | 92.08 |
|            | 551-2         | DIR               | 84.94     | 58.48     | 49.46 |
| RoBERTa    |               | ACC               | 90.25     | 91.09     | 89.60 |
|            | QNLI          | DIR               | 74.02     | 56.61     | 36.36 |
| Assess De  | letine Velme  | rACCm             | -         | 1.00      | 0.99  |
| Average Re | elative Value | rDIR <sub>m</sub> | -         | 0.76      | 0.60  |

Adversarial attack

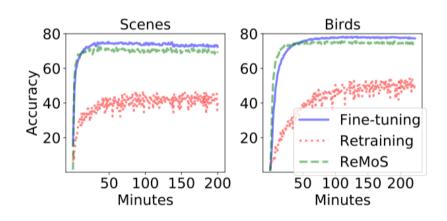
|                        | Backdoor attack |                |       |           |         |           |       |                  |           |        |           |        |       |       |  |
|------------------------|-----------------|----------------|-------|-----------|---------|-----------|-------|------------------|-----------|--------|-----------|--------|-------|-------|--|
|                        |                 |                |       |           | Data Po | oisoning  |       | Weight Poisoning |           |        |           |        |       |       |  |
| Model                  |                 | Dataset        |       | Fine-tune |         | Mag-prune |       | AoS              | Fine-tune |        | Mag-prune |        | ReN   | ЛоS   |  |
|                        |                 |                | ACC   | DIR       | ACC     | DIR       | ACC   | DIR              | ACC       | DIR    | ACC       | DIR    | ACC   | DIR   |  |
|                        | FDK             | SST-2 to SST-2 | 94.19 | 100.00    | 93.70   | 100.00    | 91.27 | 39.09            | 93.37     | 100.00 | 93.19     | 98.93  | 90.92 | 29.82 |  |
| BERT                   |                 | IMDB to IMDB   | 90.60 | 93.52     | 89.54   | 95.24     | 85.53 | 61.73            | 89.05     | 96.53  | 88.76     | 92.05  | 87.00 | 37.72 |  |
|                        | DS              | SST-2 to IMDB  | 92.11 | 99.88     | 92.27   | 100.00    | 90.04 | 74.67            | 91.85     | 100.00 | 90.82     | 99.53  | 87.42 | 61.48 |  |
|                        |                 | IMDB to SST-2  | 93.52 | 88.15     | 92.65   | 85.26     | 91.15 | 27.71            | 93.85     | 93.93  | 93.57     | 91.21  | 91.94 | 21.55 |  |
|                        | FDK             | SST-2 to SST-2 | 92.70 | 100.00    | 92.35   | 100.00    | 91.17 | 29.82            | 92.29     | 100.00 | 92.44     | 100.00 | 90.70 | 24.94 |  |
| RoBERTa                |                 | IMDB to IMDB   | 87.96 | 96.11     | 88.24   | 96.15     | 85.74 | 70.19            | 89.34     | 96.15  | 89.48     | 96.09  | 86.34 | 85.91 |  |
|                        | DS              | SST-2 to IMDB  | 90.53 | 100.00    | 91.26   | 100.00    | 90.32 | 24.14            | 91.67     | 100.00 | 91.16     | 100.00 | 88.71 | 30.83 |  |
|                        | 03              | IMDB to SST-2  | 93.21 | 96.17     | 92.46   | 96.17     | 92.17 | 61.26            | 92.80     | 96.22  | 92.58     | 96.02  | 89.95 | 18.07 |  |
| Average Relative Value |                 | -              | -     | 0.99      | 0.99    | 0.97      | 0.50  | -                | -         | 0.99   | 0.98      | 0.97   | 0.39  |       |  |

| Backdoor a | attack |
|------------|--------|
|------------|--------|

# Efficiency

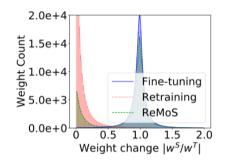
#### · Efficiency

- · Same speed as fine-tuning
- Better performance than training from scratch



#### • Interpretability

- Compute w<sup>S</sup>/w<sup>T</sup>: ReMoS reduces the number of weights that require largerange adjustment
- Distribution of magnitude: more weights with higher magnitude are excluded, which is intuitive



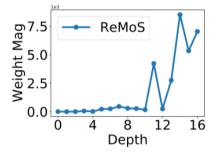


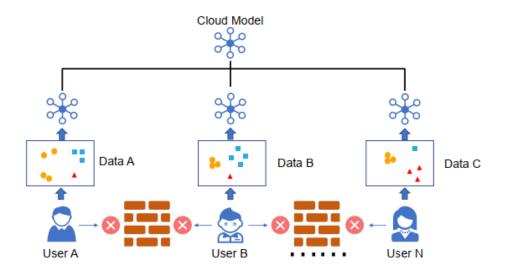
Figure 9: The distribution of weight changes during training.

Figure 10: The magnitude of weights excluded by ReMoS in each layer.

• Zhang et al. ReMoS: reducing defect inheritance in transfer learning by relevant model slicing. ICSE 2022.

## Application to federated healthcare

- · Personalization in federated learning
  - <u>Non-i.i.d</u>: Data from different client have totally different distributions
    - · Hobbies, lifestyles, body shapes, devices...
  - Preserve the <u>specificity</u> of each client, while leveraging the commonality of all other clients



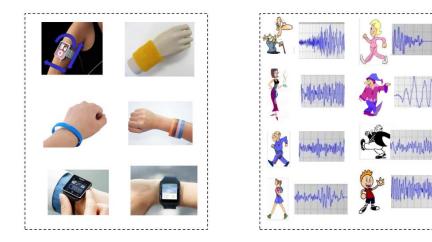
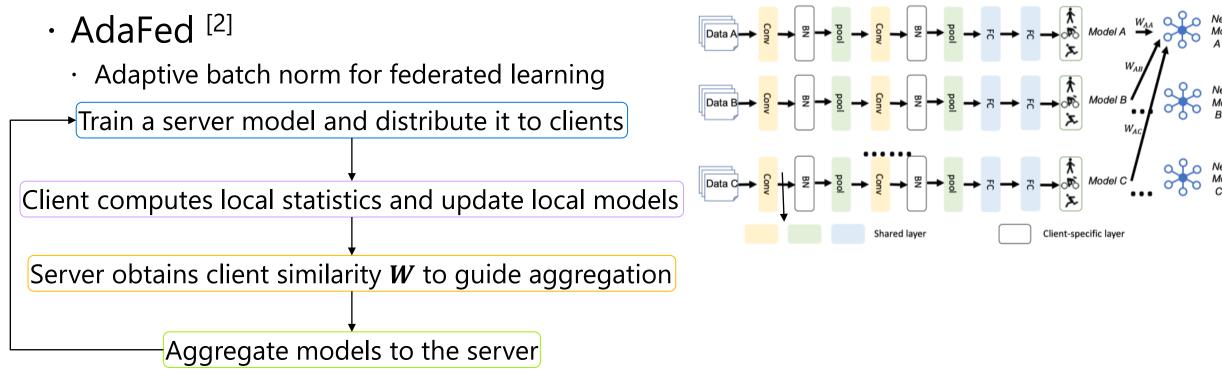


Figure 1: Data islanding and personalization in healthcare.

# Similarity-guided aggregation

- · How to compute similarity between clients?
  - Motivation: **batch norm (BN)** layers contains sufficient statistics of the data
  - $\cdot\,$  We can use BN's statistics after local data inputs to compute similarity



[2] Chen Y, Lu W, Wang J, et al. Federated Learning with Adaptive Batchnorm for Personalized Healthcare[J]. arXiv preprint arXiv:2112.00734, 2021.

#### **Obtain similarity matrix**

- BN statistics at each layer:  $(\mu_i, \sigma_i) = [(\mu^{i,1}, \sigma^{i,1}), (\mu^{i,2}, \sigma^{i,2}), \cdots, (\mu^{i,L}, \sigma^{i,L})]$
- Similarity between two clients:

 $W_2^2(\mathcal{N}(\boldsymbol{\mu}^{i,l}, \boldsymbol{\sigma}^{i,l}), \mathcal{N}(\boldsymbol{\mu}^{j,l}, \boldsymbol{\sigma}^{j,l})) = ||\boldsymbol{\mu}^{i,l} - \boldsymbol{\mu}^{j,l}||^2 + tr(\boldsymbol{\sigma}^{i,l} + \boldsymbol{\sigma}^{j,l} - 2((\boldsymbol{\sigma}^{i,l})^{1/2} \boldsymbol{\sigma}^{j,l} (\boldsymbol{\sigma}^{i,l})^{1/2})^{1/2})$ 

 $\cdot$  Then we get the distance:

$$d_{i,j} = \sum_{l=1}^{L} W_2(\mathcal{N}(\mu^{i,l}, \sigma^{i,l}), \mathcal{N}(\mu^{j,l}, \sigma^{j,l})) = \sum_{l=1}^{L} (||\mu^{i,l} - \mu^{j,l}||^2 + ||\sqrt{\mathbf{r}^{i,l}} - \sqrt{\mathbf{r}^{j,l}}||_2^2)^{1/2}$$

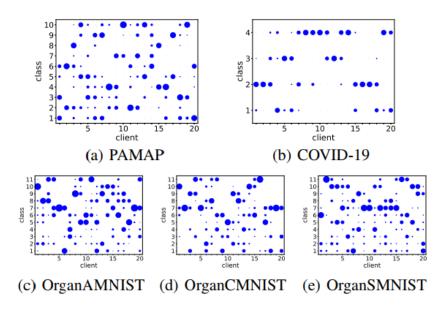
Model aggregation:

$$w_{i,j} = \left\{egin{array}{ccc} \lambda, & i=j, \ (1-\lambda) imes \hat{w}_{i,j}, & i
eq j. \end{array}
ight. \quad \left\{egin{array}{ccc} oldsymbol{\phi}_i^{t+1} = & oldsymbol{\phi}_i^{t*} \ oldsymbol{\psi}_i^{t+1} = & \sum_{j=1}^N w_{ij}oldsymbol{\psi}_j^{t*} \end{array}
ight.$$

## **Experiments of AdaFed**

 Different datasets from healthcare

| Dataset     | Туре                     | #Class | #Sample   |
|-------------|--------------------------|--------|-----------|
| PAMAP       | Sensor-based time series | 18     | 3,850,505 |
| COVID-19    | Image                    | 4      | 9,208     |
| OrganAMNIST | Image                    | 11     | 58,850    |
| OrganCMNIST | Image                    | 11     | 23,660    |
| OrganSMNIST | Image                    | 11     | 25,221    |



#### $\cdot$ Comparison methods

- Base: Each client uses local data to train local models.
- FedAvg (McMahan et al. 2017): The cloud aggregate all client models without any particular operations for noniid data.
- FedBN (Li et al. 2021): Each client preserves the local batch normalization.
- FedProx (Li et al. 2018): Allow partial information aggregation and add a proximal term to FedAvg.
- FedPer (Arivazhagan et al. 2019): Each client preserves some local layers.

#### Results

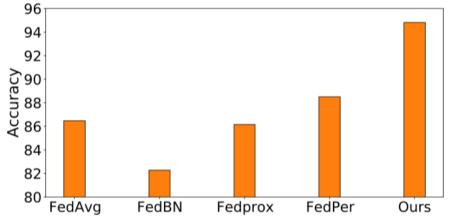
#### • PAMAP2 (time-series)

#### • 10%+ better than FedBN (ICLR-21)

| Client   | 1     | 2            | 3      | 4            | 5            | 6     | 7     | 8            | 9     | 10           | 11           | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19           | 20 avg             |
|----------|-------|--------------|--------|--------------|--------------|-------|-------|--------------|-------|--------------|--------------|-------|-------|-------|-------|-------|-------|-------|--------------|--------------------|
| Base     | 92.86 | 17.68        | 100.00 | 83.52        | 18.78        | 77.66 | 95.05 | 17.58        | 92.39 | 93.37        | 29.12        | 84.78 | 98.90 | 24.18 | 98.91 | 98.90 | 41.44 | 93.62 | 85.71        | 37.02 69.07        |
| FedAvg   | 60.27 | 62.36        | 50.56  | 73.98        | 74.27        | 62.90 | 64.03 | 87.78        | 74.49 | 64.71        | 65.24        | 63.35 | 68.33 | 64.79 | 63.12 | 85.26 | 66.21 | 59.64 | 67.87        | 72.46 67.58        |
| FedBN    | 60.72 | 62.59        | 50.34  | 73.53        | 74.72        | 62.44 | 62.90 | 88.24        | 74.27 | 64.48        | 65.69        | 62.90 | 68.33 | 65.24 | 62.44 | 85.94 | 65.99 | 59.64 | 68.10        | 72.69 67.56        |
| FedProx  | 60.50 | 62.36        | 50.34  | 73.98        | 73.81        | 61.76 | 63.57 | 87.78        | 74.27 | 64.71        | 66.37        | 63.12 | 68.33 | 65.69 | 62.44 | 85.49 | 66.21 | 59.41 | 67.87        | 72.46 67.52        |
| FedPer   | 48.31 | 97.51        | 61.40  | 47.29        | 58.47        | 23.98 | 49.55 | 91.86        | 51.24 | 77.60        | <u>89.16</u> | 57.92 | 42.53 | 49.44 | 58.60 | 86.62 | 77.32 | 52.38 | 73.08        | <b>97.52</b> 64.59 |
| WFedBN   | 77.20 | 77.55        | 77.43  | 79.64        | 81.94        | 79.86 | 86.20 | 95.02        | 85.33 | 69.23        | 91.42        | 79.41 | 74.43 | 69.75 | 81.67 | 94.10 | 82.77 | 75.74 | 77.15        | 86.91 81.14        |
| d-WFedBN | 64.33 | 77.55        | 78.33  | 77.38        | <u>79.91</u> | 80.77 | 85.52 | 92.53        | 86.23 | 69.23        | 87.58        | 80.09 | 74.66 | 70.43 | 83.71 | 93.88 | 80.50 | 74.60 | <u>78.73</u> | 87.13 <u>80.16</u> |
| f-WFedBN | 64.11 | <u>77.78</u> | 69.53  | <u>79.86</u> | 77.88        | 74.43 | 84.62 | <u>93.67</u> | 74.04 | <u>81.00</u> | 79.91        | 71.95 |       | 62.98 | 78.05 | 89.57 | 79.59 | 68.71 | 71.95        | <u>87.81</u> 77.08 |

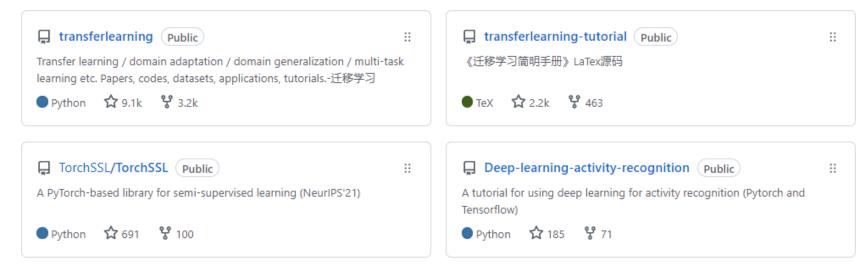
Table 1: Activity recognition results of 20 clients on PAMAP. Bold means the best result while underline means the second best result.

- · COVID-19 diagnosis
  - 4%+ better than FedPer



## **Related materials**

- Book
  - ・迁移学习导论
  - <u>http://jd92.wang/tlbook</u>
- $\cdot$  Code library
  - · Github repo: the most popular transfer learning repo on Github
  - · Papers, codes, datasets, applications...





### Conclusions

- $\cdot$  We are pushing the frontier of transfer learning in 3 aspects:
  - · Low-resource learning: FlexMatch for efficient and effective learning (NeurIPS'21)
    - · Design better framework for SSL?
  - · Domain generalization: AdaRNN for generalized time series learning (CIKM'21, TKDE'22)
    - · Can the method be one-stage?
  - Safety: Safe transfer learning and personalized federated learning (ICSE'22)
    - $\cdot$  More formal way to do this
- $\cdot$  Next
  - $\cdot$  Develop theories and algorithms for domain generalization
  - · Safe transfer learning

Thanks for your attention Discussions and collaborations are welcomed! Jindong.wang@microsoft.com





王晋东不在家