
迁移学习前沿探究探讨：
低资源、领域泛化与安全迁移

王晋东 微软亚洲研究院
https://jd92.wang/

2022.04.08

This talk will not be possible without my interns and collaborators.

https://jd92.wang/


Background: transfer learning

 Transfer learning: 迁移学习
 Reuse pre-trained models by fine-tuning it for downstream tasks

 Today’s ML applications widely adopt the pre-train and fine-tune paradigm

 Why? Because training from scratch is extremely time-consuming

 Model highlights: ResNet for CV, BERT and RoBERTa for NLP

 Industrial applications

 Google Cloud ML tutorial suggests using Google’s Inception V3 model as a pre-trained model

 Microsoft Cognitive Toolkit (CNTK) suggests using ResNet18 as a pre-trained model for tasks such as flower 

classification



Transfer learning: always the research frontier

CVPR’18 best paper IJCAI’18 Ads challenge winner

ACL’19 opening keynote ACL’20 best paper nominee Statements from Turing 

Award winners in 2021

NIPS’16 tutorial 



Roadmap

+Training 

data

Source

data

Pre-trained 

model

Target 

model

Fine-tune Test Test 

data

Domain adaptation

(领域自适应)

Low-resource learning

(低资源学习)

Domain generalization

(领域泛化)

Applications: Time series analysis, anomaly 

detection, Parkinson’s disease, speech 

recognition, image classification…

Safe transfer

(安全迁移)



Contents

 1. Low-resource learning
 1.2 Algorithm: Curriculum pseudo labeling for low-resource learning (NeurIPS’21)

 1.2 Application: Cross-lingual low-resource speech recognition (TASLP’22)

 2. Domain generalization
 2.1 Algorithm: Generalized representation learning (CIKM’21)

 2.2 Application: Anomaly detection (TKDE’22)

 3. Safe transfer learning
 3.1 Algorithm: Safe transfer learning by relevant model slicing (ICSE’22)

 3.2 Application: Federated learning for healthcare

 4. Conclusions



Low-resource Learning

 Research background
 Learn a generalized model by relying on a small amount of labeled data

 Problem
 How to guarantee that knowledge can seamlessly transfer from labeled to unlabeled data?

 Transfer criterion: a fixed threshold by Google’s FixMatch[NeurIPS’20]

 Research challenge
 Is the pre-defined fixed threshold for semi-supervised learning enough?

 Can design better thresholding for semi-supervised learning?



Low-resource learning

 Fixed vs. flexible threshold
 We should learn different thresholds for different classes

 Our proposal: FlexMatch
 Different for different classes → per-class adaptation

 Lower down thresholds for hard-to-learn classes → encourage difficult classes

 Raise thresholds if already well-learned → keep strict to ensure final acc

 Dynamically adjusted for every class at every time step → automate the process

FlexMatch



Low-resource learning: FlexMatch

 Technical details
 A curriculum pseudo labeling (CPL) strategy that gradually learn the difficulties of classes

 Cluster assumption: The learning effect of a class can be reflected by the number of samples 

whose predictions fall above the high fixed threshold and into this class.

Warm-upFlexible

Mapping function

Warm-up&Norm



Method: CPL

 Curriculum Pseudo Labeling (CPL)

9



Results

 Significant improvement with limited labels.

 Significant improvement with complicated tasks.

 Significant improvement on convergence speed.

 No new hyperparameter introduced.

 No additional computation introduced.

10

• B. Zhang et al. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. 
NeurIPS 2021. https://arxiv.org/abs/2110.08263

https://arxiv.org/abs/2110.08263


TorchSSL

 A unified Pytorch library for semi-supervised learning

https://github.com/TorchSSL/TorchSSL

https://github.com/TorchSSL/TorchSSL


Application: speech recognition

 Background
 There are around 7,000 languages in the world, most of which do not have large amount of labelled data

 Automatic speech recognition (ASR) for the low-resource languages remains a challenge for end-to-end 
(E2E) models

 Existing methods

 Pre-training on the rich-resource languages and fine-tuning on the low-resource languages

 Performing multi-task learning on rich- and low-resource languages simultaneously

 Meta-learning on the rich-resource languages for rapid adaptation to the low-resource languages

 Limitations

 Low parameter-efficiency

 Speech-Transformer models have huge amounts of parameters

 Overfitting problem

 Heavy models can get easily overfit on low-resource languages

12



Motivation

 Learn the relationship between different languages
 Different languages have different vocabulary, but may share same representations

 Relationship
 Implicit: make no assumptions on their relationship, use a network to learn it directly

 Explicit: assume languages have a linear relation, simplify the algorithm

 Reduce overfitting
 Freeze most of the parameters

 Only tune a small part

13



Our approach

 Exploiting adapters for cross-lingual low-resource ASR
 MetaAdapter: (implicit relationship)

 Directly learn the relationship between different languages

 SimAdapter: (explicit relationship)

 Assume they have a linear relationship, learn it using attention

 SimAdapter+: (implicit + explicit)

 Combine MetaAdapter and SimAdapter for better results

14



MetaAdapter for Cross-lingual ASR

 Motivation: obtain a proper initialization for fast adaptation

 Pre-train the Adapters using Model-Agnostic Meta-Learning (MAML):

15



SimAdapter for Cross-lingual ASR

 Formulation
 SimAdapter:

 Stability regularization:

 Fusion-guide loss:

 Encourage the model to focus on the corresponding adapters for the similarity learning

16



Experiment Results

 Main results

 Impact of adapter training strategies

17

Hou et al. Exploiting Adapters for Cross-lingual Low-resource Speech Recognition. TASLP 2022. 

https://arxiv.org/abs/2105.11905

https://arxiv.org/abs/2105.11905


Domain generalization

 Research background
 Leverage multiple training distributions to learn a 

generalized model on unseen domains

 Problem
 Data properties are dynamically changing over time

 Leading to dynamic distribution change

 Research challenge
 How to capture the dynamical distribution change?

 E.g., how to quantify the distributions in time series?

• Wang et al. Generalizing to unseen domains: a survey on domain generalization. IJCAI 2021 survey track. 

https://arxiv.org/abs/2103.03097

https://arxiv.org/abs/2103.03097


Domain generalization

 Our proposal: AdaRNN (adaptive RNNs)
 Formulate the problem as Temporal Covariate Shift (TCS)

 Design a framework to solve TCS in continuous data

Raw data

Probability 

distribution

B

𝑷𝑨 ≠ 𝑷𝑩 ≠ 𝑷𝑪 ≠ 𝑷𝑻𝒆𝒔𝒕Temporal Covariate Shift:

?

A

𝑷𝑨
𝑷𝑩 𝑷𝑪

𝑷𝑻𝒆𝒔𝒕

Unseen testC

𝑡



How to solve TCS?

Construct worst-case 

distribution scenario

Match the big 

distribution gap

Good model

AdaRNN: Adaptive RNNs

Temporal Distribution Characterization: characterizing the

distribution information in original TS

Temporal Distribution Matching: build a temporally-invariant

model



Temporal Distribution Characterization

 TDC
 Find the 𝐾 most dissimilar segments

 How to define similarity?

 Distribution distance 𝐷

 Why most dissimilar segments?

 Diverse distribution information helps generalization

 Objective

It is similar to a dynamic programming problem, but we solve it using greedy algorithm for efficiency.



Temporal Distribution Matching

 Plain method
 A plain domain generalization (DG) problem with 𝐾 domains

 Plain DG ignores the importance of each hidden representation’s distribution

 TDM
 Our solution: an adaptive weight matrix for each hidden state



Temporal Distribution Matching (Cont.)

 How to learn the weight matrix?
 A naïve way of attention layer will fail since:

 At early stage, the hidden state representations learned by 𝜃 are less meaningful, which will result in insufficient 

learning of weights

 Network can easily get stuck since it is very complex and time-consuming

 Our solution

 A boosting-based importance evaluation



Temporal Distribution Matching (Cont.)



Results



Analysis

 Segment number matters!

 Different numbers of segments reflect different distribution information

 Our TDC algorithm give the best segmentation results

 Better than random split and reverse

 Convergence

 Our method can converge within a few iterations

 Training time

 Our method will not bring significant computational burden and even more efficient than SOTA



One more thing: Extension to Transformer

 The structure can also apply to Transformers…
 AdaTransformer: Adaptive Transformer

Input

Self-attention

Output

Input

Self-attention

Output

TDM

Domain i Domain j

𝑁 ×
𝑁 ×

We did not tune hyperparameters heavily; better 

results will come if you tune them carefully

Research on transformer is left for future work.

• Du et al. AdaRNN: adaptive learning and forecasting for time series. CIKM 2021. 

https://arxiv.org/abs/2108.04443

https://arxiv.org/abs/2108.04443


Application to anomaly detection

 AMSL: adaptive memory network with self-supervised learning
 Limited normal data: lack of representation patterns → Self-supervised learning

 Unseen abnormal data: needs to learn from normal data → adaptive memory network

 2-5% improvement over best baselines

 Efficient and simple to implement

Y. Zhang, J. Wang#, Y. Chen, H. Yu, T. Qin. Adaptive Memory Networks with Self-supervised Learning for Unsupervised Anomaly Detection. IEEE TKDE 2022.



Safe transfer learning

 Motivation
 Software reuse is popular in software engineering →

wide usage of pretrained models in ML

 Malicious program/code cause damage → Fine-tuned

models can inherit vulnerabilities from PT. models

 The defects can easily be propagated from the teacher to the
students, with the inheritance rate ranging from 52.58% to 

97.85%

 Research question
 Reducing the defect inheritance of PT model, while

 Preserving its benefits (e.g., performance)

 Challenges
 Attack is unknown

 DNN models are diverse and lack of interpretability



Background: DNN model attack

 DNN models are not safe:
 Adversarial attack: Obtain adversarial examples using adversarial training to fool the model [1]

 Backdoor attack: Hidden malicious logic is injected into the model purposely [2]

[1] https://towardsdatascience.com/adversarial-attacks-in-machine-learning-and-how-to-defend-against-them-a2beed95f49c

[2] Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. arXiv 1708.06733.

https://towardsdatascience.com/adversarial-attacks-in-machine-learning-and-how-to-defend-against-them-a2beed95f49c


Related work

 Can transfer learning models be attacked?
 Given several target images and pretrained model, we can attack it by perturbing the input

student images [Wang et al.’18]

 Generate salient features, then perturb the inputs [Ji et al.’18]

 Softmax layer is easy to attack [Rezaei et al.’20]

 How to defend?
 Train from scratch: best defense, worst performance

 Fine-tune: worst defense, best performance

 Fix-after-transfer

 fine-tune, then use defense: expensive and poor effectiveness due to small data

 Fix-before-transfer: randomly initialize the student, then extract teacher knowledge

 Renofeation [Chin et al.’21]: add dropout, feature regularization, and stochastic weight average; not end-to-end

• [Wang et al.’18] Wang B, Yao Y, Viswanath B, et al. With great training comes great vulnerability: Practical attacks against transfer learning. USENIX Security’18.

• [Ji et al.’18] Ji Y, Zhang X, Ji S, et al. Model-reuse attacks on deep learning systems. CCS’18.

• [Rezaei et al.’20] Rezaei S, Liu X. A target-agnostic attack on deep models: Exploiting security vulnerabilities of transfer learning. ICLR’20.

• [Chin et al.’21] Chin et al. Renofeation: A Simple Transfer Learning Method for Improved Adversarial Robustness. CVPR’21 workshop.

Yes!



Our approach

 ReMoS: Relevant Model Slicing
 Given a DNN model 𝑀 and a target domain dataset 𝐷, ReMoS is to compute a subset of 

model weights that are more relevant (bounded by a threshold) to the inference of samples in 

𝐷 and less relevant to the samples outside 𝐷.

 Relevant slicing: from traditional software engineering

 Assumption:

 Pre-trained model as a white-box (i.e., architecture and weights)

 Target dataset for student task

 Formulation:



Our approach

 ReMoS
 Coverage frequency profiling: compute coverage frequency of each weight → support of student task

 Ordinal score computation: compute score of each weight based on teacher weight and coverage frequency

 Relevant slice generation: identify the relevant weights

 Fine-tuning: vanilla fine-tune



Our approach

 Coverage frequency profiling
 Neuron coverage: find the neuron whose activation value is large than a threshold 𝛼

 On dataset 𝐷𝑆

 Weight coverage:

 Sum of the neuron coverage frequency of two neurons that this weight connects

 Ordinal score computation
 Formulation:

 To unify the value range



Our approach

 Relevant slice generation
 Identify which weights should be included based on ordinal scores (𝑡𝜃 is the slice size, not 

value size)

 Fine-tune
 Traditional fine-tune

 Advantage
 Less computation overhead: only forward-pass using the student dataset once

 No need to know the student task in advance

 Agnostic to DNN architectures

• Weights inside 𝑠𝑙𝑖𝑐𝑒(𝐷𝑆): Fine-tune from teacher

• Weights outside 𝑠𝑙𝑖𝑐𝑒(𝐷𝑆): Random initialization



Experiments

 Research questions to be answered
 Defect mitigation effectiveness

 Performance sacrifice vs. defect mitigation

 Generalizability

 Generalize to different tasks (CV and NLP)

 Efficiency

 How much time does it cost compared to traditional transfer learning

 Interpretability

 Why is ReMoS effective? What does the student model look like?



Effectiveness

 CV results
 Better ACC

 Lower DIR

Backdoor attack

Adversarial attack

Neuron coverage attack

ReMoS only sacrifices less than 

2% model accuracy and reduces

over 75% inherited defects than 

the conventional fine-tuning



Effectiveness

 NLP results
 Defect is more severe in NLP

 Ours is significantly better

 ReMoS reduces 50% to 61% DIR, only 

sacrificing 3% acc at most

Backdoor attack

Adversarial attack



Efficiency

 Efficiency
 Same speed as fine-tuning

 Better performance than training from

scratch

• Interpretability
• Compute 𝑤𝑆/𝑤𝑇: ReMoS reduces the 

number of weights that require large-

range adjustment

• Distribution of magnitude: more weights 

with higher magnitude are excluded,

which is intuitive

• Zhang et al. ReMoS: reducing defect inheritance in transfer learning by relevant model slicing. ICSE 2022.



Application to federated healthcare

 Personalization in federated learning
 Non-i.i.d: Data from different client have totally different distributions

 Hobbies, lifestyles, body shapes, devices…

 Preserve the specificity of each client, while leveraging the commonality of all other clients



Similarity-guided aggregation

 How to compute similarity between clients?
 Motivation: batch norm (BN) layers contains sufficient statistics of the data

 We can use BN’s statistics after local data inputs to compute similarity

 AdaFed [2]

 Adaptive batch norm for federated learning

[2] Chen Y, Lu W, Wang J, et al. Federated Learning with Adaptive Batchnorm for Personalized Healthcare[J]. arXiv preprint arXiv:2112.00734, 2021.

Train a server model and distribute it to clients

Client computes local statistics and update local models

Server obtains client similarity 𝑾 to guide aggregation

Aggregate models to the server



Obtain similarity matrix

 BN statistics at each layer:

 Similarity between two clients:

 Then we get the distance:

 Model aggregation:



Experiments of AdaFed

 Different datasets from 

healthcare

 Comparison methods



Results

 PAMAP2 (time-series)
 10%+ better than FedBN (ICLR-21)

 COVID-19 diagnosis
 4%+ better than FedPer



Related materials

 Book
 迁移学习导论

 http://jd92.wang/tlbook

 Code library
 Github repo: the most popular transfer learning repo on Github

 Papers, codes, datasets, applications…

http://jd92.wang/tlbook


Conclusions

 We are pushing the frontier of transfer learning in 3 aspects:
 Low-resource learning: FlexMatch for efficient and effective learning (NeurIPS’21)

 Design better framework for SSL?

 Domain generalization: AdaRNN for generalized time series learning (CIKM’21, TKDE’22)

 Can the method be one-stage?

 Safety: Safe transfer learning and personalized federated learning (ICSE’22)

 More formal way to do this

 Next
 Develop theories and algorithms for domain generalization

 Safe transfer learning

Thanks for your attention

Discussions and collaborations are welcomed!
Jindong.wang@microsoft.com


