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Transfer learning aims to learn robust classifiers for the target domain by leveraging knowledge from a

source domain. Since the source and the target domains are usually from different distributions, existing

methods mainly focus on adapting the cross-domain marginal or conditional distributions. However, in real

applications, the marginal and conditional distributions usually have different contributions to the domain

discrepancy. Existing methods fail to quantitatively evaluate the different importance of these two distribu-

tions, which will result in unsatisfactory transfer performance. In this article, we propose a novel concept

called Dynamic Distribution Adaptation (DDA), which is capable of quantitatively evaluating the relative

importance of each distribution. DDA can be easily incorporated into the framework of structural risk mini-

mization to solve transfer learning problems. On the basis of DDA, we propose two novel learning algorithms:

(1)Manifold Dynamic DistributionAdaptation (MDDA) for traditional transfer learning, and (2) Dynamic Dis-

tribution Adaptation Network (DDAN) for deep transfer learning. Extensive experiments demonstrate that

MDDA and DDAN significantly improve the transfer learning performance and set up a strong baseline over

the latest deep and adversarial methods on digits recognition, sentiment analysis, and image classification.

More importantly, it is shown that marginal and conditional distributions have different contributions to the

domain divergence, and our DDA is able to provide good quantitative evaluation of their relative importance,

which leads to better performance. We believe this observation can be helpful for future research in transfer

learning.
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1 INTRODUCTION

Supervised learning is perhaps the most popular and well-studied paradigm in machine learning
during the past years. Significant advance has been achieved in supervised learning by exploiting
a large amount of labeled training data to build powerful models. For instance, in computer vision,
large-scale labeled datasets such as ImageNet [18] for image classification and MS COCO [36]
for object detection and semantic segmentation have played an instrumental role to help train
computer vision models with superior performance. In sentiment analysis, a lot of reviews for all
kinds of products are available to train sentiment classification models. Unfortunately, it is often
expensive and time-consuming to acquire sufficient labeled data to train these models. Further-
more, there is often dataset bias in newly emerging data, i.e., the existing model is often trained
on a particular dataset and will generalize poorly in a new domain. For example, the images of an
online product can be very different from those taken at home. The product review for electronic
devices is likely to be different from that of clothes. Under this circumstance, it is necessary and
important to design algorithms that can handle both the label scarcity and dataset bias challenges.
Domain adaptation, or transfer learning [46, 61], has been a promising approach to solve such

problems. The main idea of transfer learning is to leverage the abundant labeled samples in some
existing domains to facilitate learning in a new target domain by reducing the dataset bias. The
domain with abundant labeled samples is often called the source domain, while the domain for
which a newmodel is to be trained is target domain. However, due to the dataset bias, the data dis-
tributions on different domains are usually different. In such a circumstance, traditional machine
learning algorithms cannot be applied directly, since they assume that training and testing data are
under the same distributions. Transfer learning is able to reduce the distribution divergence [46]
such that the models on the target domain can be learned.
To copewith the difference in distributions between domains, existingworks can be summarized

into two main categories: (a) instance reweighting [16, 68], which reuses samples from the source
domain according to some weighting technique; and (b) feature matching, which either performs
subspace learning by exploiting the subspace geometrical structure [20, 25, 52, 64] or distribution
alignment to reduce the marginal or conditional distribution divergence between domains [40, 62,
74]. Recently, the success of deep learning has dramatically increased the performance of transfer
learning either via deep representation learning [8, 31, 41, 66, 70, 78] or adversarial learning [22,
23, 38, 51, 75]. The key idea behind these works is to learn more transferable representations using
deep neural networks. Then, the learned feature distributions can be aligned such that their domain
discrepancy can be reduced.
However, despite the great success achieved by traditional and deep transfer learning meth-

ods, there is still a challenge ahead. Existing works only attempt to align the marginal [37, 45,
58] or the conditional distributions [38, 48]. Although recent advance has suggested that aligning
both distributions will lead to better performance [40, 41, 62], they only give the two distributions
equalweights, which fails to evaluate the relative importance of these two distributions. In their as-
sumptions, both the marginal and conditional distributions are contributing equally to the domain
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Fig. 1. (a) The different effect of marginal and conditional distributions. (b) Performance comparison be-
tween our dynamic distribution adaptation and the latest transfer learning methods.

divergence. However, in this article, we argue that this assumption is not practical in real applica-
tions. For example, when two domains are very dissimilar (e.g., transfer learning between (1) and
(3) in Figure 1(a)), the marginal distribution is more important. When the marginal distributions
are close (transfer learning between (1) and (4) in Figure 1(a)), the conditional distribution of each
class should be given more weight. Ignoring this fact will likely to result in unsatisfactory transfer
performance. There is no method that can quantitatively account for the relative importance of
these two distributions in conjunction.
In this article, we propose a novel concept of Dynamic Distribution Adaptation (DDA) to

dynamically and quantitatively adapt the marginal and conditional distributions in transfer learn-
ing. To be specific, DDA is able to dynamically learn the distribution weights through calculating
theHΔH divergence [5] between domains when learning representations. Then, the relative im-
portance of marginal and conditional distributions can be obtained, which in turn can be utilized
to learn more transferable feature representations. This dynamic importance learning and feature
learning are being optimized iteratively to learn a domain-invariant transfer classifier eventually.
To the best of our knowledge, DDA is the first work to dynamically and quantitatively evaluate the
importance of both distributions. The significant improvements of DDA over the latest method on
different kinds of tasks is shown in Figure 1(b).
To enable good representation learning, we propose two novel learning methods based on DDA

with the principle of Structural Risk Minimization (SRM) [59]. For traditional transfer learning, we
develop the Manifold Dynamic Distribution Adaptation (MDDA) method to utilize the Grassmann
manifold [30] in learning non-distorted feature representations. For deep transfer learning, we
develop Dynamic Distribution Adaptation Network (DDAN) to use the deep neural work in learn-
ing end-to-end transfer classifier. We also develop respective learning algorithms for MDDA and
DDAN.
To sum up, this work makes the following contributions:

(1) We propose the DDA concept for domain adaptation. DDA is the first quantitative evalu-
ation framework for the relative importance of marginal and conditional distributions in
domain adaptation. This is useful for a wide range of future research on transfer learning.

(2) On top of DDA, we propose two novel methods: MDDA for traditional transfer learning
and DDAN for deep transfer learning. Both methods can be efficiently formulated and,
finally, learn the domain-invariant transfer classifier.
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(3) We conduct extensive experiments on digit classification, object recognition, and sen-
timent classification datasets. Experimental results demonstrate that both MDDA and
DDAN are significantly better than many state-of-the-art traditional and deep methods.
More importantly, empirical results have also demonstrated that the different effect of
marginal and conditional distributions do exist, and our DDA is able to give them quanti-
tative weights, which facilitates the performance of transfer learning.

This article is an extension of our previous oral paper at ACM Multimedia conference[65]. Our
extensions include: (1) A more general and clear concept of dynamic distribution adaptation and
its calculation. (2) We extend DDA in both manifold learning and deep learning methods, and
then we formulate these algorithms and propose respective learning algorithms. (3) We extend the
experiments in digit classification, sentiment analysis, and image classification, which have shown
the effectiveness of our methods. And (4) we extensively analyze our calculation of DDA in new
experiments.
The remainder of this article is structured as follows. We review the related work in Section 2. In

Section 3, we introduce some previous knowledge before introducing the proposed method. Sec-
tion 4 thoroughly presents our proposed DDA concept and its two extensions: MDDA and DDAN.
Extensive experiments are shown in Section 5, where we extensively evaluate the performance of
MDDA and DDAN. Finally, Section 6 concludes this article.

2 RELATEDWORK

Domain adaptation, or transfer learning, is an active research area in machine learning. Apart
from the popular survey by Pan and Yang [46], several recent survey papers have extensively in-
vestigated specific research topics in transfer learning, including visual domain adaptation [64,
65], heterogeneous transfer learning [17, 21], multi-task learning [76], and cross-dataset recogni-
tion [73]. There are also several successful applications using transfer learning for activity recog-
nition [13, 14, 63, 66], object recognition [24], face recognition [49], speech recognition [69],
speech synthesis [33], and text classification [19]. Interested readers are recommended to refer
to http://transferlearning.xyz to find out more related works and applications.

From the perspective of transfer learning methods, there are three main categories: (1) Instance
re-weighting, which reuses samples according to some weighting technique [15, 16, 56]; (2) Fea-
ture transformation, which performs representation learning to transform the source and target
domains into the same subspace [38, 45, 62, 74]; and (3) Transfer metric learning [42–44], which
learns transferable metric between domains. Since our proposed methods are mainly related to
feature-based transfer learning, we will extensively introduce the related work in the following
aspects.

2.1 Subspace and Manifold Learning

One category of feature-based transfer learning is subspace and manifold learning. The goal is
to learn representative subspace or manifold representations that are invariant across domains.
Along this line, subspace alignment (SA) [20] aligned the base vectors of both domains but failed
to adapt feature distributions. Subspace distribution alignment (SDA) [53] extended SA by adding
subspace variance adaptation. However, SDA did not consider the local property of subspaces
and ignored conditional distribution alignment. Correlation Alignment (CORAL) [52] aligned sub-
spaces in second-order statistics, but it did not consider the distribution alignment. Scatter com-
ponent analysis (SCA) [24] converted the samples into a set of subspaces (i.e., scatters) and then
minimized the divergence between them.
However, some work used the property of manifold to further learn tight representations. Ge-

odesic flow kernel (GFK) [25] extended the idea of sampled points in manifold [27] and proposed
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to learn the geodesic flow kernel between domains. The work in Reference [3] used a Hellinger
distance to approximate the geodesic distance in Riemann space. Reference [2] proposed to use
Grassmann for domain adaptation, but ignored the conditional distribution alignment. Different
from these approaches, DDA can learn a domain-invariant classifier in the manifold and align both
marginal and conditional distributions.

2.2 Distribution Alignment

Another category of feature-based transfer learning is distribution alignment. Thework of this cat-
egory is pretty straightforward: Find some feature transformations that can minimize the distribu-
tion divergence. Along this line, existing work can be classified into three subcategories: marginal
distribution alignment, conditional distribution alignment, and joint distribution alignment.
DDA substantially differs from existing work that only aligns marginal or conditional distribu-

tion [45]. Joint distribution adaptation (JDA) [40] matched both distributions with equal weights.
Others extended JDA by adding regularization [39], sparse representation [67], structural consis-
tency [32], domain invariant clustering [55], and label propagation [74]. The work of Balanced
Distribution Adaptation [62] first proposed to manually weight the two distributions. The main
differences between DDA (MDDA) and these methods are as follows: (1) These works treat the
two distributions equally. However, when there is a greater discrepancy between both distribu-
tions, they cannot evaluate their relative importance and thus lead to undermined performance.
Our work is capable of evaluating the quantitative importance of each distribution via considering
their different effects. (2) These methods are designed only for the original space, where feature
distortion will negatively affect the performance. DDA (MDDA) can align the distributions in the
manifold to overcome the feature distortion.

2.3 Domain-invariant Classifier Learning

Different from the above two types of work that further need to learn a classifier for the tar-
get domain, some research is able to learn the domain-invariant classifier while simultaneously
performing subspace learning or distribution alignment. Recent work such as adaptation regular-
ization for transfer learning (ARTL) [39], domain-invariant projection (DIP) [1, 2], and distribution
matching machines (DMM) [10] also aimed to build a domain-invariant classifier. However, ARTL
and DMM cannot effectively handle feature distortion in the original space. Nor can they account
for the different importance of distributions. DIP mainly focused on feature transformation and
only aligned marginal distributions. DDA (MDDA) is able to mitigate feature distortion and quan-
titatively evaluate the importance of marginal and conditional distribution adaptation.

2.4 Deep and Adversarial Transfer Learning

Recent years have witnessed the advance of deep transfer learning. Compared to traditional shal-
low learning, deep neural networks are capable of learning better representations [70]. Deep do-
main confusion (DDC) [58] first added the MMD loss to a deep network to adapt the network.
Similarly to DDC, deep adaptation networks (DAN) adopted the multiple-kernel MMD [29] to the
network. Instead, Deep CORAL [54] added CORAL loss [52] to the network. CORAL is a second-
order loss compared to MMD, which is a first-order loss. Furthermore, Zellinger et al. introduce
the central moment discrepancy [71] to the network, which is a higher-order distance.
Different from the above deep transfer learning methods, adversarial learning [26] also helps to

learn more transferable and discriminative representations. Domain-adversarial neural network
(DANN) was first introduced by Ganin et al. [22, 23]. The core idea is to add a domain-adversarial
loss to the network instead of the predefined distance function such asMMD. This has dramatically
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enabled the network to learn more discriminative information. Following the idea of DANN, a lot
of work adopted domain-adversarial training [8, 11, 38, 41, 75].

The above-discussed work all ignore the different effect of marginal and conditional distribu-
tions in transfer learning, while our proposed DDA (DDAN) is fully capable of dynamically eval-
uating the importance of each distribution.

3 PRELIMINARIES

Let Ω ∈ Rd be an input measurable space of dimension d and C the set of possible labels. We
use P (Ω) to denote the set of all probability measures over Ω. In standard transfer learning set-
ting, there is a source domain Ωs = {xsi ,ysi }nsi=1 with known labels ysi ∈ C and a target domain
Ωt = {xtj }ntj=1 with unknown labels. Here, xs ∼ P (Ωs ) and xt ∼ P (Ωt ) are samples from either

source or the target domain. Different from existing work that assumes that either the marginal
or conditional distributions of two domains are different, in this work, we tackle a more gen-
eral case that both distributions are different, i.e., P (xs ) � P (xt ), P (ys |xs ) � P (yt |xt ). The goal
is to learn a transferable classifier f such that the risk on the target domain can be minimized:
ϵt = min P(x,y )∼Ωt

( f (x) � y).

3.1 Structural Risk Minimization

From a statistical machine learning perspective, the above problem can be formulated and solved
by the SRM principle [59]. In SRM, the prediction function f can be formulated as

f = argmin
f ∈HK , (x,y )∼Ωl

J ( f (x),y) + λR ( f ), (1)

where the first term indicates the loss on data samples with J (·, ·) as the loss function, the second
term denotes the regularization term, and HK is the Hilbert space induced by kernel function
K (·, ·). λ is the tradeoff parameter. The symbol Ωl denotes the domain that has labels.

In our problem, we have Ωl = Ωs , since there are no labels in the target domain. Specifically,
to effectively handle the different distributions between Ωs and Ωt , we can further divide the
regularization term as

R ( f ) = λDf (Ωs ,Ωt ) + ρRf (Ωs ,Ωt ), (2)

where Df (·, ·) represents the distribution divergence between Ωs and Ωt with λ, ρ the tradeoff
parameters and Rf (·, ·) denotes other regularization.
3.2 MaximumMean Discrepancy

There are a variety of means to measure the distribution divergence between two domains such as
Kullback−Leibler divergence and cross-entropy.With respect to efficiency, we adopt themaximum

mean discrepancy (MMD) [5] to empirically calculate the distribution divergence between domains.
As a non-parametric measurement, MMD has been widely adopted by many existing methods [24,
45, 74], and its effectiveness has been proven analytically in Reference [28].

Formally, the MMD distance between distributions P and Q is defined as [28]

MMD (Hk , P ,Q ) := sup
| |f | |Hk ≤1

EX∼P f (X ) − EY∼Q f (Y ), (3)

whereHk is the Reproduced kernel Hilbert space with Mercer kernel K (·, ·), | | f | |Hk
≤ 1 is its unit

norm ball, and E[·] denotes the mean of the embedded samples.
This is known as an integral probability metric in the statistics literature. To compute this diver-

gence, a biased empirical estimate of MMD is obtained by replacing the population expectations
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Fig. 2. The main idea of MDDA and DDAN.

with empirical expectations computed on the samples X and Y ,

MMDb (Hk , P ,Q ) = sup
| |f | |Hk ≤1

�� 1m
m∑
i=1

f (Xi ) − 1

n

n∑
i=1

f (Yi )�� , (4)

wherem,n are sample numbers of P and Q , respectively.

4 DYNAMIC DISTRIBUTION ADAPTATION

In this section, we present the general dynamic distribution adaptation framework and its two
learning algorithms in detail.

4.1 The General Framework

Transfer learning is to learn transferable representations that can generalize well across different
domains. The key idea of DDA is to dynamically learn the relative importance of marginal and
conditional distributions in transfer learning. Therefore, the dynamic importance learning and
transfer feature learning are not independently but quite involved. Accordingly, DDA first per-
forms feature learning to learn more transferable representations. Then, it can perform dynamic
distribution adaptation to quantitatively account for the relative importance of marginal and con-
ditional distributions to address the challenge of unevaluated distribution alignment. These two
steps are iteratively optimized via several iterations. Eventually, a domain-invariant classifier f
can be learned by combining these two steps based on the principle of SRM.
Recall the principle of SRM in Equation (1). If we useд(·) to denote the feature learning function,

then f can be represented as

f = argmin
f ∈∑n

i=1 HK

J ( f (д(xi )),yi ) + η | | f | |2K + λDf (Ωs ,Ωt ) + ρRf (Ωs ,Ωt ), (5)

where | | f | |2K is the squared norm of f . The term Df (·, ·) represents the proposed dynamic dis-
tribution alignment. Additionally, we introduce Rf (·, ·) as a Laplacian regularization to further
exploit the similar geometrical property of nearest points in manifold G [4]. η, λ, and ρ are the
regularization parameters.
In the next sections, we first introduce the learning of dynamic distribution adaptation. Then,

we show how to learn the feature learning function д(·) either through manifold learning (i.e.,
MDDA in Figure 2(a)) and deep learning (i.e., DDAN in Figure 2(b)).

4.2 Dynamic Distribution Adaptation

The purpose of dynamic distribution adaptation is to quantitatively evaluate the importance of
aligningmarginal (P ) and conditional (Q) distributions in domain adaptation. Existingmethods [40,
74] assume that both distributions are equally important. However, this assumption may not be
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valid in real-world applications. For instance, when transferring from (1) to (3) in Figure 1(a), there
is a large difference between datasets. Therefore, the divergence between Ps and Pt is more domi-
nant. In contrast, from (1) to (4) in Figure 1(a), the datasets are similar. Therefore, the distribution
divergence in each class (Qs and Qt ) is more dominant.

In view of this phenomenon, we introduce an adaptive factor to dynamically adjust the impor-

tance of these two distributions. Formally, the dynamic distribution alignment Df is defined as

Df (Ωs ,Ωt ) = (1 − μ )Df (Ps , Pt ) + μ
C∑
c=1

D (c )
f

(Qs ,Qt ), (6)

where μ ∈ [0, 1] is the adaptive factor and c ∈ {1, . . . ,C} is the class indicator. Df (Ps , Pt ) denotes

the marginal distribution alignment, and D (c )
f

(Qs ,Qt ) denotes the conditional distribution align-

ment for class c .
When μ → 0, it means that the distribution distance between the source and the target do-

mains is large. Thus, marginal distribution alignment is more important ((1)→ (3) in Figure 1(a)).
When μ → 1, it means that feature distribution between domains is relatively small, such that the
distribution of each class is dominant. Thus, the conditional distribution alignment is more impor-
tant ((1)→ (4) in Figure 1(a)). When μ = 0.5, both distributions are treated equally as in existing
methods [40, 74]. Hence, the existing methods can be regarded as special cases of the dynamic
distribution alignment. By learning the optimal adaptive factor μopt (which we will discuss later),
MDDA can be applied to different domain adaptation problems.
We use the MMD [5] introduced in the previous section to empirically calculate the distribution

divergence between domains. To be specific, the marginal and conditional distribution distances
can be respectively computed as

Df (Ps , Pt ) = ‖E[f (zs )] − E[f (zt )]‖2HK
, (7)

D (c )
f

(Qs ,Qt ) = ‖E[f (z(c )s )] − E[f
(
z
(c )
t

)
]‖2HK

. (8)

Then, DDA can be expressed as

Df (Ωs ,Ωt ) = (1 − μ )‖E[f (zs )) − E[f (zt )]‖2HK
+ μ

C∑
c=1

‖E[f
(
z
(c )
s

)
] − E[f

(
z
(c )
t

)
]‖2HK

. (9)

Note that since Ωt has no labels, it is not feasible to evaluate the conditional distribution Qt =

Qt (yt |zt ). Instead, we follow the idea in Reference [62] and use the class conditional distribution
Qt (zt |yt ) to approximateQt . To evaluateQt (zt |yt ), we apply prediction toΩt using a base classifier
trained onΩs to obtain soft labels forΩt . The soft labels may be less reliable, so we iteratively refine
the prediction. Note that we only use the base classifier in the first iteration. After that, MDDA can
automatically refine the labels for Ωt using results from previous iterations.

4.2.1 Quantitative Evaluation of Adaptive Factor μ. We can treat μ as a parameter and tune
its value by cross-validation techniques. However, there are no labels for the target domain in
unsupervised transfer learning problems. There are two indirect solutions to apply the value of μ
in DDA rather than estimating its value: by Random guessing and byMax-min averaging. Random
guessing is technically very intuitive. We can randomly pick a value of μ in [0, 1] and then perform
MDDA using the corresponding μrand to get the transfer learning result. If we repeat this process
t times and denote the t th transfer learning result as rt , then the final result can be calculated as
1
t

∑t
i=1 rt . Max-min averaging is also simple to implement. We can search the value of μ in [0, 1]

with the step of 0.1, which will generate a candidate set of μ: [0, 0.1, . . . , 0.9, 1.0]. Then, similarly
to random guessing, we can also obtain the averaged results as 1

11

∑11
i=1 ri .
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Although the random guessing and max-min averaging are both feasible and simple solutions
to estimate μ, they are computationally prohibitive. More importantly, there are no guarantees of
their results. It is extremely challenging to calculate the value of μ.
In this work, we make the first attempt toward calculating μ (i.e., μ̂) by exploiting the global

and local structure of domains. We adopt the A-distance [5] as the basic measurement. The A-
distance is defined as the error of building a linear classifier to distinguish two domains (i.e., a
binary classification). Formally, we denote ϵ (h) the error of a linear classifier h discriminating the
two domains Ωs and Ωt . Then, the A-distance can be defined as

dA (Ωs ,Ωt ) = 2(1 − 2ϵ (h)). (10)

We can directly compute themarginalA-distance using the above equation, which is denoted as
dM . For theA-distance between conditional distributions, we use dc to denote theA-distance for

the cth class. It can be calculated asdc = dA (D (c )
s ,D (c )

t ), whereD (c )
s andD (c )

t denote samples from

class c in Ωs and Ωt , respectively. Note that dM denotes the marginal difference, while sumC
c=1dc

denotes the conditional difference on all classes. In this article, our assumption is that the domain
divergence is caused by both the marginal and conditional distributions. Therefore, dM +

∑C
c=1 dc

can represent the whole divergence. Eventually, μ can be estimated as

μ̂ = 1 − dM

dM +
∑C
c=1 dc

. (11)

Note that the number of labeled samples in the source domain is often much larger than that in
the target domain. Therefore, to solve this imbalanced classification problem, we perform upsam-
pling [34] on the target domain to make the samples with almost the same size. We also notice that
this upsampling process is random, and thus we repeat this step several times to get the averaged
μ value.
This estimation has to be computed during every iteration of the dynamic distribution adap-

tation, since the feature distribution may vary after evaluating the conditional distribution each
time. To the best of our knowledge, this is the first solution to quantitatively estimate the relative
importance of each distribution. In fact, this estimation can be significant for future research in
transfer learning and domain adaptation.

Remark. Currently, the quantitative evaluation of μ only supports the situation where the label
space of the source and the target domains are the same. However, it is important to note that
this evaluation is also open for open set domain adaptation [47] or partial transfer learning [72],
where the label spaces are not the same. In such cases, we should consider the different similarity
between each class in two domains. For instance, we can regard the classes that do not belong
to the target domain as outliers and perform outlier detection before calculating μ. Then, we can
select the most similar samples and classes in both domains and perform DDA. We leave this part
for future research.

4.3 Manifold Dynamic Distribution Adaptation

In this section, we introduce the learning of DDA through manifold learning. We propose MDDA,
as shown in Figure 2(a). Manifold feature learning can serve as the feature learning step to mit-
igate the influence of feature distortion [2] in transfer learning. The features in manifold space
can reflect more detailed structure and property of the domains, thus avoiding feature distortion.
MDDA learns д(·) in the Grassmannmanifold G(d ) [30], since features in the manifold have some
geometrical structures [4, 30] that can avoid distortion in the original space. In addition, G(d )
can facilitate classifier learning by treating the original d-dimensional subspace (i.e., feature vec-
tor) as its basic elements. Feature transformation and distribution alignment often have efficient
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numerical forms (i.e., they can be represented as matrix operations easily) and facilitate domain
adaptation on (d ) [30]. There are several approaches to transform the features into G [3, 27]. We
embed Geodesic Flow Kernel (GFK) [25] to learn д(·) for its computational efficiency.

When learning manifold features, MDDA tries to model the domains with d-dimensional sub-
spaces and then embed them into G(d ). Let Ps and Pt denote the PCA subspaces for the source
and the target domain, respectively. G can thus be regarded as a collection of all d-dimensional
subspaces. Each original subspace can be seen as a point in G. Therefore, the geodesic flow
{Φ(t ) : 0 ≤ t ≤ 1} between two points can be used to establish a path between the two subspaces,
where t denotes the calculus variant between two domains. If we let Ps = Φ(0) and Pt = Φ(1),
then finding a geodesic flow from Φ(0) to Φ(1) equals to transforming the original features into an
infinite-dimensional feature space, which eventually eliminates the domain shift. This approach
can be seen as an incremental way of “walking” from Φ(0) to Φ(1). Specifically, the new features
can be represented as z = д(x) = Φ(t )T x. From Reference [25], the inner product of transformed
features zi and zj gives rise to a positive semidefinite geodesic flow kernel,

〈zi , zj 〉 =
∫ 1

0

(Φ(t )T xi )
T (Φ(t )T xj ) dt = xTi Gxj . (12)

The geodesic flow can be parameterized as

Φ(t ) = PsU1Γ(t ) − RsU2Σ(t ) = [Ps Rs ]

[
U1 0
0 U2

] [
Γ(t )
−Σ(t )

]
, (13)

where Rs ∈ RD×d presents the orthogonal complements to Ps . U1 ∈ RD×d and U2 ∈ RD×d are two
orthonormal matrices that can be computed by singular value decomposition (SVD),

PTSPT = U1ΓV
T,RT

SPT = −U2ΣV
T. (14)

According to GFK [25], the geodesic flow kernel G can be calculated by

G =
[
PsU1 RsU2

] [Λ1 Λ2

Λ2 Λ3

] [
UT
1P

T
s

U	2 R
T
s

]
, (15)

where Λ1,Λ2,Λ3 are three diagonal matrices with elements

λ1i = 1 +
sin (2θi )

2θi
, λ2i =

cos (2θi ) − 1
2θi

, λ3i = 1 − sin (2θi )

2θi
. (16)

Thus, the features in the original space can be transformed into Grassmann manifold with z =

д(x) =
√
Gx.

After manifold feature learning and dynamic distribution alignment, f can be learned by sum-
marizing SRM over Ωs and distribution alignment. By adopting the square loss l2, f can be ex-
pressed as

f = argmin
f ∈HK

n∑
i=1

(yi − f (zi ))
2 + η | | f | |2K + λDf (Ωs ,Ωt ) + ρRf (Ωs ,Ωt ). (17)

To perform efficient learning, we now further reformulate each term.
SRM on the Source Domain: Using the representer theorem [4], f can be expanded as

f (z) =
n+m∑
i=1

βiK (zi , z), (18)
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where β = (β1, β2, . . .)
T ∈ R(n+m)×1 is the coefficients vector and K is a kernel. Then, SRM on Ωs

becomes
n∑
i=1

(yi − f (zi ))
2 + η | | f | |2K =

n+m∑
i=1

Aii (yi − f (zi ))
2 + η | | f | |2K = | |(Y − βTK)A| |2F + ηtr(βTKβ ),

(19)
where | | · | |F is the Frobenious norm. K ∈ R(n+m)×(n+m) is the kernel matrix with Ki j = K (zi , zj ),

and A ∈ R(n+m)×(n+m) is a diagonal domain indicator matrix with Aii = 1 if i ∈ Ωs ; otherwise,
Aii = 0.Y = [y1, . . . ,yn+m] is the label matrix from the source and the target domains, tr(·) denotes
the trace operation, and η is the shrinkage parameter. Although the labels for Ωt are unavailable,
they can be filtered out by the indicator matrix A.
Dynamic distribution adaptation: Using the representer theorem and kernel tricks, dynamic

distribution alignment in Equation (9) becomes

Df (Ωs ,Ωt ) = tr
(
βTKMKβ

)
, (20)

whereM = (1 − μ )M0 + μ
∑C
c=1 Mc is the MMD matrix with its element calculated by

(M0)i j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
n2 , zi , zj ∈ Ωs

1
m2 , zi , zj ∈ Ωt

− 1
mn
, otherwise

, (21)

(Mc )i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n2
c

, zi , zj ∈ D (c )
s

1
m2
c

, zi , zj ∈ D (c )
t

− 1
mcnc
,

⎧⎪⎨⎪⎩zi ∈ D
(c )
s , zj ∈ D (c )

t

zi ∈ D (c )
t , zj ∈ D (c )

s

0, otherwise

, (22)

where nc = |D (c )
s | andmc = |D (c )

t |.
Laplacian Regularization: Additionally, we add a Laplacian regularization term to further

exploit the similar geometrical property of nearest points in manifold G [4]. We denote the pair-
wise affinity matrix as

Wi j =

{
sim(zi , zj ), zi ∈ Np (zj ) or zj ∈ Np (zi )
0, otherwise

, (23)

where sim(·, ·) is a similarity function (such as cosine distance) for measuring the distance between
two points.Np (zi ) denotes the set ofp-nearest neighbors to point zi .p is a free parameter andmust
be set in the method. By introducing Laplacian matrix L = D −W with diagonal matrix Dii =∑n+m

j=1 Wi j , the final regularization can be expressed as

Rf (Ωs ,Ωt ) =
n+m∑
i, j=1

Wi j ( f (zi ) − f (zj ))
2 =

n+m∑
i, j=1

f (zi )Li j f (zj ) = tr
(
βTKLKβ

)
. (24)

Overall Reformulation: By combining Equations (19), (20), and (24), f in Equation (17) can
be reformulated as

f = argmin
f ∈HK

| |(Y − βTK)A| |2F + η tr(βTKβ ) + tr
(
βTK(λM + ρL)Kβ

)
. (25)

Setting derivative ∂ f /∂β = 0, we obtain the solution

β� = ((A + λM + ρL)K + ηI)−1AYT . (26)
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ALGORITHM 1:MDDA: Manifold Dynamic Distribution Adaptation

Input: Data matrix X = [Xs ,Xt ], source domain labels ys , manifold subspace dimension d , regularization
parameters λ,η, ρ, and #neighbor p.

Output: Classifier f .

1: Learn manifold feature transformation kernelG via Equation (12), and get manifold feature Z =
√
GX.

2: Train a base classifier using Ωs , then apply prediction on Ωt to get its soft labels ŷt .
3: Construct kernel K using transformed features Zs = Z1:n, : and Zt = Zn+1:n+m, :.

4: repeat

5: Calculate the adaptive factor μ̂ using Equation (11). and computeM0 andMc by Equation (21) and (22).

6: Compute β� by solving Equation (26) and obtain f via the representer theorem in Equation (18).

7: Update the soft labels of Ωt : ŷt = f (Zt ).
8: until Convergence

9: return Classifier f .

4.4 Dynamic Distribution Adaptation Network

In this section, we propose DDAN to perform end-to-end learning of not only the feature learning
function д(·) but also the classifier f . DDAN is able to leverage the ability of the recent advance of
deep neural networks in learning representative features through end-to-end training [6]. Specifi-
cally, we exploit a backbone network to learn useful feature representations, while simultaneously
performing domain adaptation using DDA.
The network architecture of DDAN is shown in Figure 2(b). First, the samples from the source

and target domains serves as the inputs into the deep neural networks. Second, the CNN network
(the purple part) such as AlexNet [35] and ResNet [31] can extract high-level features from the
inputs. Third, the features are going through a fully connected layer (the blue part) to perform
soft-max classification to obtain the labels y. The novel contribution here is to align the source
and target domain features using the dynamic distribution alignment (DDA, the yellow part).
Adopting the DDA, the learning objective of DDAN can be expressed as:

f = min
Θ

n∑
i=1

J ( f (xsi ),y
s
i ) + λDf (Ωs ,Ωt ) + ρRf (Ωs ,Ωt ), (27)

where J (·, ·) is the cross-entropy loss function and Θ = {w,b} containing the weight and bias
parameters of the neural network. Note that DDAN is based on the deep neural network, so instead
of using the whole domain data, we use the batch data by following the mini-batch stochastic
gradient descent (SGD) training procedure. Therefore, the dynamic distribution adaptation is only
calculated between batches rather than whole domains. This is more practical and efficient in real
applications where the data are coming in a streaming manner.
Most MMD based deep transfer learning methods [58] are based on Equation (4) and only

adopted the linear kernel for simplicity. Since the formulation in Equation (4) is based on pair-
wise similarity and is computed in quadratic time complexity, it is prohibitively time-consuming
for using mini-batch SGD in CNN-based transfer learning methods. Gretton et al. [29] further
suggest an unbiased approximation of MMD with linear complexity. Without loss of generality,
by assumingM = N , MMD can then be computed as

MMD2
l (s, t ) =

2

M

M/2∑
i=1

hl (zi ), (28)
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ALGORITHM 2: DDAN: Dynamic Distribution Adaptation Network

Input: Source domain (xs , ys ), target domain data xt , regularization parameters λ, ρ, and #neighbor p.
Output: Classifier f .
1: repeat

2: Sample a mini-batch data from both the source and target domain

3: Feed the mini-batch data into the network and get the pseudo labels for Ωt

4: Update the parameters {Θ,b} by computing the mini-batch gradient according to Equation (30).

5: After an epoch, calculate μ using Equation (1) and calculate the loss

6: until Convergence

7: return Classifier f .

where hl is an operator defined on a quad-tuple zi = (xs2i−1, x
s
2i , x

t
2j−1, x

t
2j ),

hl (zi ) = k
(
xs2i−1, x

s
2i

)
+ k
(
xt2j−1, x

t
2j

)
− k
(
xs2i−1, x

t
2j

)
− k
(
xs2i , x

t
2j−1
)

(29)

The approximation in Equation (28) takes a summation form and is suitable for gradient com-
putation in a mini-batch manner.
The gradient of the parameters can be computed as:

ΔΘ =
∂J (·, ·)
∂Θ

+ λ
∂Df (·, ·)
∂Θ

+ ρ
∂Rf (·, ·)
∂Θ

. (30)

Updating μ: Another important aspect is to dynamically update μ in DDAN. Similarly to the
above mini-batch learning of MMD distance, it seems natural to calculate μ after each mini-batch
learning. However, the labels on the source domain and the pseudo labels on the target domain
are likely to be inconsistent after mini-batch learning. For instance, assume that the batch size for
both domains is bsize = 32 and the total class number |C| = 31. Then, after a forward operation
for one batch, we can obtain 32 pseudo labels for the target domain. Since bsize is rather close to
|C|, it is highly likely that the mini-batch labels for both domains do not match, which will easily
lead to the mode collapse or gradient exploding problem.
To avoid this problem, we propose to update μ after each epoch of iteration, rather than each

mini-batch data. In fact, this step is very similar to that ofMDDA,which uses all the data to perform
learning. The learning process of DDAN is summarized in Algorithm 2.

4.5 Discussions

BothMDDA and DDAN are generic learningmethods that are suitable for all transfer classification
problems. In this section, we briefly discuss their differences.
MDDA is for traditional learning, while DDAN is for deep learning. Compared to DDAN, which

is designed for deep neural networks, MDDA can be easily applied on the small resource con-
straint devices. One possible limitation of MDDAmaybe that it relies on certain feature extraction
methods. For instance, on image dataset, we probably need to extract SIFT, SURF, or HOG fea-
tures. Luckily, MDDA can also use the deep features extracted by deep neural networks such as
AlexNet [35] and ResNet [31]. MDDA has a very useful property: It can learn the cross-domain
function directly without the need for explicit classifier training. This makes it significantly more
advantageous compared to most existing work such as Joint Geometrical and Statistical Alignment
(JGSA) [74] and SCA [24], which needs to train an extra classifier after learning transferrable fea-
tures.
However, DDAN is suitable for cloud computing. The model of DDAN can be trained in an end-

to-end manner and then be used for inference on the device. DDAN does not need extra feature
extraction and classifier training procedure. All steps can be unified in one single deep neural
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Fig. 3. Samples from the datasets in this article.

Table 1. Statistics of the Five Benchmark Datasets

Dataset #Sample #Feature for MDDA #Class Domain Type

USPS+MNIST 3,800 256 10 U, M Digit
Amazon review 1,123 400 2 B, D, E, K Text

Office-31 4,110 2,048 31 A, W, D Image
ImageCLEF DA 1,800 2,048 12 C, I, P Image
Office-Home 15,500 2,048 65 Ar, Cl, Pr, Rw Image

network. This advantage makes it useful for large-scale datasets, which will probably result in
prohibitive computations for MDDA.

5 EXPERIMENTS AND EVALUATIONS

In this section, we evaluate the performance of MDDA through extensive experiments on large-
scale public datasets. The source code forMDDA is available at http://transferlearning.xyz.Wewill
focus on evaluating the performance of MDDA, since most of our contributions can be covered
by MDDA. In the last part of this section, we will evaluate the performance of the deep version of
MDDA.

5.1 Experimental Setup

5.1.1 Datasets. We adopted five public image datasets: USPS+MNIST, Amazon review [7],
Office-31 [50], ImageCLEF-DA [41], and Office-Home [60]. These datasets are popular for bench-
marking domain adaptation algorithms and have been widely adopted in most existing work such
as in References [11, 38, 74, 75]. Figure 3 shows some samples of the datasets, and Table 1 lists
their statistics.
USPS (U) andMNIST (M) are standard digit recognition datasets containing handwritten digits

from 0 to 9. Since the same digits across two datasets follow different distributions, it is necessary
to perform domain adaptation. USPS consists of 7,291 training images and 2,007 test images of
size 16 × 16. MNIST consists of 60,000 training images and 10,000 test images of size 28 × 28. We
construct two tasks: U → M and M → U. In the rest of the article, we use A→ B to denote the
knowledge transfer from source domain A to the target domain B.
Amazon review [7] is the benchmark dataset for cross-domain sentiment analysis. This dataset

includes reviews about the Kitchen appliances (K), DVDs (D), Books (B), and Electronics (E). The
reviews of each product can be regarded as data from the same domain. There are 1,000 positive
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and 1,000 negative instances on each domain. Transfer learning can be conducted between any
two domains, leading to 12 tasks.
Office-31 [50] consists of three real-world object domains: Amazon (A), Webcam (W), and

DSLR (D). It has 4,652 images with 31 categories.Caltech-256 (C) contains 30,607 images and 256
categories. We constructed six tasks: A→ D, A→W, D→ A, D→W, W→ A, W→ D.
ImageCLEF-DA [41] is a dataset presented in the ImageCLEF 2014 domain adaptation chal-

lenge. It is composed by selecting the 12 common classes shared by three public datasets (domains):
Caltech-256 (C), ImageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). There are 50 images in each
category and 600 images in each domain, while Office-31 has different domain sizes. We permute
domains and build six transfer tasks: C→ I, C→ P, I→ C, I→ P, P→ C, P→ I.
Office-Home [60] is a new dataset that consists of 15,588 images from four different domains:

Artistic images (Ar), Clip Art (Cl), Product images (Pr), and Real-World images (Rw). For each
domain, the dataset contains images of 65 object categories collected from office and home settings.
We use all domains and construct 12 transfer learning tasks: Ar→ Cl, . . ., Rw→ Pr.
In total, we constructed 2 + 12 + 6 + 6 + 12 = 38 tasks.

5.1.2 State-of-the-art ComparisonMethods. We compared the performance of MDDAwith sev-
eral state-of-the-art traditional and deep transfer learning approaches.
Traditional transfer learning methods:

• NN, SVM, and PCA

• TCA: Transfer Component Analysis [45], which performs marginal distribution alignment
• GFK: performs manifold feature learning [25]
• JDA: adapts marginal & conditional distribution [40]
• CORAL: performs second-order subspace alignment [52]
• SCA: adapts scatters in subspace [24]
• JGSA: aligns marginal & conditional distributions with label propagation [74]

Deep transfer learning methods:

• AlexNet [35] and ResNet [31], as baseline networks
• DDC: a single-layer deep adaptation method [58]
• DAN: a multi-layer adaptation method [37]
• DANN: an adversarial deep neural network [22]
• ADDA: Adversarial Discriminative Domain Adaptation [57], which is a general framework

for adversarial transfer learning
• JAN: Joint Adaptation Networks [41], which is a deep network with joint MMD distance
• CAN: Collaborative and Adversarial Network [75], which is based on joint training
• CDAN: Conditional Domain Adversarial Networks [38], which is a conditional network

5.1.3 Implementation Details. MDDA requires to extract features from the raw inputs. For
USPS+MNIST datasets, we adopted the 256 SURF features by following existing work [62, 74].
For Amazon review dataset, we follow the feature generation method to exploit marginalized de-
noising autoencoders [12] to improve the feature representations. For Office-31, ImageCLEF DA,
and Office-Home datasets, we adopted the 2,048 fine-tuned ResNet-50 features for fair comparison.
As for DDAN, we only report its results on three image datasets, since USPS+MNIST and Ama-
zon review datasets are rather simple to transfer. DDAN is able to take the original image data as
inputs. We also adopted ResNet-50 as the baseline network for fair comparison [38, 75].
For the comparison methods, we either cite the results reported in their original papers or

run experiments using their publicly available codes. As for MDDA, we set the manifold feature
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Table 2. Classification Accuracy (%) on USPS-MNIST Datasets with SURF Features

Task 1NN SVM TCA GFK JDA CORAL SCA JGSA MDDA

U→M 44.7 62.2 51.2 46.5 59.7 30.5 48.0 68.2 76.8

M→ U 65.9 68.2 56.3 61.2 67.3 49.2 65.1 80.4 89.6

AVG 55.3 65.2 53.8 53.9 63.5 39.9 56.6 74.3 83.2

Table 3. Classification Accuracy (%) on Amazon Review Dataset

Method 1NN TCA GFK SA JDA CORAL JGSA MDDA

B→ D 49.6 63.6 66.4 67.0 64.2 71.6 66.6 77.8

B→ E 49.8 60.9 65.5 70.8 62.1 65.1 75.0 80.0

B→ K 50.3 64.2 69.2 72.2 65.4 67.3 72.1 79.9
D→ B 53.3 63.3 66.3 67.5 62.4 70.1 55.5 74.7
D→ E 51.0 64.2 63.7 67.1 66.3 65.6 67.3 80.4

D→ K 53.1 69.1 67.7 69.4 68.9 67.1 65.6 81.0

E→ B 50.8 59.5 62.4 61.4 59.2 67.1 51.6 63.8
E→ D 50.9 62.1 63.4 64.9 61.6 66.2 50.8 62.5
E→ K 51.2 74.8 73.8 70.4 74.7 77.6 55.0 84.4

K→ B 52.2 64.1 65.5 64.4 62.7 68.2 58.3 63.5
K→ D 51.2 65.4 65.0 64.6 64.3 68.9 56.4 72.2
K→ E 52.3 74.5 73.0 68.2 74.0 75.4 51.7 80.7

AVG 51.3 65.5 66.8 67.3 65.5 69.1 60.5 75.1

dimension d = 30, 30, 50, 60, 200 for the five datasets, respectively. The number of iteration is
set to T = 10. We use the RBF kernel with the bandwidth set to be the variance of inputs.
The regularization parameters are set as p = 10, λ = 4.5,η = 0.1, and ρ = 1. Additionally, the
experiments on parameter sensitivity and convergence analysis in Section 5.5 indicate that the
performance of MDDA and DDAN stays robust with a wide range of parameter choices. For
DDAN, we set the learning rate to be 0.01 with the batch size to be 32 and a weight decay of
5e − 4. Other parameters are tuned by following transfer cross validation [77].
Although MDDA is easy to use, and its parameters do not have to be fine-tuned. For research

purpose, we also investigate how to further tune those parameters. We choose parameters accord-
ing to following rules. First, SRM on source domain is very important. Thus, we prefer a small η to
make sure MDDA does not degenerate. Second, distribution alignment is required by SRM. Thus,
we choose a slightly larger λ to make it effective. Third, we choose ρ by following the existing
work [4]. Fourth, p is set following Reference [9].

We adopt classification accuracy on Ωt as the evaluationmetric, which is widely used in existing
literature [25, 45, 62]:

Accuracy =
��x : x ∈ Ωt ∧ ŷ (x) = y (x)��

|x : x ∈ Ωt | . (31)

5.2 Results and Analysis

5.2.1 Results on Digit Datasets. The classification results on USPS+MNIST datasets are shown
in Table 2. On the digit recognition tasks, MDDA outperforms the best method JGSA by a large
margin of 8.9%. These results clearly indicate that MDDA significantly outperforms existing
methods.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 1, Article 6. Publication date: February 2020.



Transfer Learning with Dynamic Distribution Adaptation 6:17

Table 4. Classification Accuracy (%) on Office-31 Dataset with ResNet-50 as the Baseline

Method Baseline Traditional transfer learning Deep transfer learning DDA

Task ResNet 1NN SVM TCA GFK JDA CORAL DDC DAN DANN ADDA JAN CAN MDDA DDAN

A→ D 68.9 79.1 76.9 74.1 77.9 80.7 81.5 76.5 78.6 79.7 77.8 84.7 85.5 86.3 84.9

A→W 68.4 75.8 73.3 72.7 72.6 73.6 77.0 75.6 80.5 82.0 86.2 85.4 81.5 86.0 88.8

D→ A 62.5 60.2 64.1 61.7 62.3 64.7 65.9 62.2 63.6 68.2 69.5 68.6 65.9 72.1 65.3

D→W 96.7 96.0 96.5 96.7 95.6 96.5 97.1 96.0 97.1 96.9 96.2 97.4 98.2 97.1 96.7

W→ A 60.7 59.9 64.9 60.9 62.8 63.1 64.3 61.5 62.8 67.4 68.9 70.0 63.4 73.2 65.0

W→ D 99.3 99.4 99.0 99.6 99.0 98.6 99.6 98.2 99.6 99.1 98.4 99.8 99.7 99.2 100

AVG 76.1 78.4 79.1 77.6 78.4 79.5 80.9 78.3 80.4 82.2 82.9 84.3 82.4 85.7 83.5

Table 5. Classification Accuracy (%) on ImageCLEF DA with ResNet-50 as Baseline

Method Baseline Traditional transfer learning Deep transfer learning DDA

Task ResNet 1NN SVM TCA GFK JDA CORAL DAN DANN JAN CAN CDAN MDDA DDAN

C→ I 78.0 83.5 86.0 89.3 86.3 90.8 83.0 86.3 87.0 89.5 89.5 91.2 92.0 91.0

C→ P 65.5 71.3 73.2 74.5 73.3 73.6 71.5 69.2 74.3 74.2 75.8 77.2 78.8 76.0

I→ C 91.5 89.0 91.2 93.2 93.0 94.0 88.7 92.8 96.2 94.7 94.2 96.7 95.7 94.0

I→ P 74.8 74.8 76.8 77.5 75.5 75.3 73.7 74.5 75.0 76.8 78.2 78.3 79.8 78.0

P→ C 91.2 76.2 85.8 83.7 82.3 83.5 72.0 89.8 91.5 91.7 89.2 93.7 95.5 92.7

P→ I 83.9 74.0 80.2 80.8 78.0 77.8 71.3 82.2 86.0 88.0 87.5 91.2 91.5 91.0

AVG 80.7 78.1 82.2 83.2 81.4 82.5 76.7 82.5 85.0 85.8 85.7 88.1 88.9 87.2

Moreover, the performances of distribution alignment methods (TCA, JDA, and JGSA) and sub-
space learning methods (GFK, CORAL, and SCA) were generally inferior to MDDA. Each method
has its limitations and cannot handle domain adaptation in specific tasks, especially with degener-
ated feature transformation and unevaluated distribution alignment. After manifold or subsapce
learning, there still exists large domain shift [2]; while feature distortion will undermine the dis-
tribution alignment methods.

5.2.2 Results on Sentiment Analysis Dataset. The results on Amazon review datasets are shown
in Table 3. From the results, we can observe that our proposedMDDAoutperforms the best baseline
method CORAL by a largemargin of 6.0%. This clearly indicated thatMDDA is able to dramatically
reduce the divergence between different text domains.

5.2.3 Results on Image Datasets. The classification accuracy results on the Office-31, Image-
CLEF DA, and Office-Home datasets are shown in Tables 4, 5, and 6, respectively. From those
results, we can make the following observations.
First, MDDA outperforms all other traditional and deep comparison methods in most tasks

(20/24 tasks). The average classification accuracy achieved by MDDA on all the image tasks is
77.3%. Specifically, on the hardest Office-Home dataset, MDDA significantly outperforms the latest
deep transfer learning method CDAN [38] by 4.5%, which clearly demonstrates the effectiveness
of MDDA. The results indicates that MDDA is capable of significantly reducing the distribution
divergence in domain adaptation problems.
Second, DDAN also substantially outperforms all the traditional and deep methods on most

tasks. Note that DDAN is only based on deep neural network without adversarial training, while
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Table 6. Classification Accuracy (%) on Office-Home Dataset with ResNet-50 as Baseline

Method Baseline Traditional transfer learning Deep transfer learning DDA

Task ResNet 1NN SVM TCA GFK JDA CORAL DAN DANN JAN CDAN MDDA DDAN

Ar→ Cl 34.9 45.3 45.3 38.3 38.9 38.9 42.2 43.6 45.6 45.9 46.6 54.9 51.0

Ar→ Pr 50.0 60.1 65.4 58.7 57.1 54.8 59.1 57.0 59.3 61.2 65.9 75.9 66.0

Ar→ Rw 58.0 65.8 73.1 61.7 60.1 58.2 64.9 67.9 70.1 68.9 73.4 77.2 73.9

Cl→ Ar 37.4 45.7 43.6 39.3 38.7 36.2 46.4 45.8 47.0 50.4 55.7 58.1 57.0

Cl→ Pr 41.9 57.0 57.3 52.4 53.1 53.1 56.3 56.5 58.5 59.7 62.7 73.3 63.1

Cl→ Rw 46.2 58.7 60.2 56.0 55.5 50.2 58.3 60.4 60.9 61.0 64.2 71.5 65.1

Pr→ Ar 38.5 48.1 46.8 42.6 42.2 42.1 45.4 44.0 46.1 45.8 51.8 59.0 52.0

Pr→ Cl 31.2 42.9 39.1 37.5 37.6 38.2 41.2 43.6 43.7 43.4 49.1 52.6 48.4

Pr→ Rw 60.4 68.9 69.2 64.1 64.6 63.1 68.5 67.7 68.5 70.3 74.5 77.8 72.7

Rw→ Ar 53.9 60.8 61.1 52.6 53.8 50.2 60.1 63.1 63.2 63.9 68.2 67.9 65.1

Rw→ Cl 41.2 48.3 45.6 41.7 42.3 44.0 48.2 51.5 51.8 52.4 56.9 57.6 56.6

Rw→ Pr 59.9 74.7 75.9 70.5 70.6 68.2 73.1 74.3 76.8 76.8 80.7 81.8 78.9

Avg 46.1 56.4 56.9 51.3 51.2 49.8 55.3 56.3 57.6 58.3 62.8 67.3 62.5

Fig. 4. (a) Performance of several tasks when searching μ in [0, 1]. (b) Performance comparison of Random
guessing (Random), average search (AVSE), and our DDA.

other deep methods such as CAN [75] and CDAN [38] all require to train an adversarial neural
network, which clearly needs more time to converge. In this way, DDAN is much more efficient
than these networks.
Third, we also note that traditional methods such as TCA, JDA, and CORAL can also achieve

good performance compared to the ResNet, 1NN, and SVM. This clearly indicates the necessity
of transfer learning when building models from two domains. Again, our proposed MDDA and
DDAN can achieve the best performances.

5.3 Evaluation of Dynamic Distribution Adaptation

We verify the effectiveness of dynamic distribution adaptation in this section. We answer two im-
portant questions: (1) Does the different effect of marginal and conditional distributions exist in
transfer learning? and (2) Is our evaluation algorithm for DDA effective? It is worth noting that
there is no ground truth for μ. Therefore, to verify our evaluation, we record the performance of
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Table 7. Comparison of the Performance between Our Evaluation of μ and Average Search (AVSE)

Task M→ U B→ E E→ D A→W W→ A C→ P P→ C Ar→ Rw Cl→ Pr Rw→ Cl AVG

AVSE −11.83 −1.95 −1.40 −4.03 −4.69 −0.66 −0.67 −1.49 −3.56 −1.21 −3.15
Ours +0.22 −1.25 −0.80 −1.26 −0.14 −0.00 −0.00 −0.02 −0.29 −0.02 −0.37

Suppose the results of grid search are 0.

Fig. 5. Ablation study of MDDA and DDAN. “M” denotes manifold learning, and “Lap” denotes Laplace
regularization.

DDA by searching different μ values. The hint is that better μ value contributes better performance.
Specifically, we run DDA by searching μ ∈ {0, 0.1, . . . , 0.9, 1.0}. To answer the first question, we
draw the results of DDA under different values of μ in Figure 4(a). To answer the second ques-
tion, we compare the error made by random search (Random), average search (Average), and our
evaluation in Figure 4(b).
First, it is clear that the classification accuracy varies with different choices of μ. This indicates

the necessity to consider the different effects between marginal and conditional distributions. We
can also observe that the optimal μ value varies on different tasks (μ = 0.2, 0, 1 for the three tasks,
respectively). Thus, it is necessary to dynamically adjust the distribution alignment between do-
mains according to different tasks. Moreover, the optimal value of μ is not unique for a given task.
The classification results may be the same even for different values of μ.
Second, we also report the results of our evaluation and average search in Table 7. Combining

the results in Figure 4(b), we can conclude that our evaluation of μ is significantly better than
random search and average search. Additionally, both random search and average search require
to run the whole MDDA or DDAN algorithm several times to get steady results, our evaluation
is only required once in each iteration of the algorithm. This means that our evaluation is more
efficient. It is worth noting that our evaluation is extremely close to the results from grid search.
Note that on task M→ U of Table 7, our evaluation exceeds the results of grid search. Considering
that there is often few or none labels in the target domain, grid search is not actually possible.
Therefore, our evaluation of μ can be used to approximate the ground truth in real applications.

Third, we noticed that on image classification datasets, the performance of MDDA is slightly
better than DDAN. MDDA is a shallow learning method, which is much easier to tune hyper-
parameters than DDAN, which is based on deep learning. We think that after a more extensive
hyperparameter tuning process, the performance of DDAN will be the same or better as MDDA.
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Fig. 6. Parameter sensitivity analysis and convergence of MDDA.

5.4 Ablation Study

In this section, we conduct ablation study of MDDA and DDAN. MDDA mainly consists of four
components: SRM, manifold learning, DDA, and Laplacian regularization. DDAN is composed of
a deep network, DDA, and Laplacian regularization. We extensively analyze the performance of
MDDA and DDAN on some tasks from each dataset and present the results in Figure 5.
The results clearly indicate that each component is important to DDA. Of all the components,

it is shown that our proposed DDA component is the most important part, which dramatically
increases the results of transfer learning. For MDDA, manifold feature learning shows marginal
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Fig. 7. Parameter sensitivity and convergence analysis of DDAN.

Table 8. Running Time of MDDA and DDAN

Task ARTL JGSA DANN CDAN MDDA DDAN

U→M 29.1 14.6 — — 31.4 —
B→ E 22.8 18.7 — — 23.5 —
W→ A 45.6+763.6 66.5 + 763.6 1567.3 1873.2 48.8 + 7663.6 1324.1
C→ P 124.2 + 1321.4 198.3 + 1321.4 2342.1 2451.2 156.7 + 1321.4 2109.8
Cl→ Pr 187.4 + 1768.7 244.3 + 1768.7 2877.7 2956.5 207.4 + 1768.7 2698.1

improvement, while it could help to eliminate the feature distortion of the original space [2]. For
DDAN, we can clearly see that our DDA component is better than DAN, which is only adapting
the marginal distributions. This again clarifies the importance of the proposed DDA framework.
Finally, it seems that Laplacian regularization also generates marginal improvements except on
the digit datasets (USPS+MNIST). We add Laplacian regularization, since it helps the algorithm to
converge.

5.5 Parameter Sensitivity and Convergence Analysis

As with other state-of-the-art domain adaptation algorithms [24, 39, 74], MDDA and DDAN also
involve several parameters. In this section, we evaluate the parameter sensitivity of them. Experi-
mental results demonstrated the robustness of MDDA and DDAN under a wide range of parameter
choices.
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5.5.1 MDDA. We investigated the sensitivity against manifold subspace dimension d and
#neighbor p through experiments with a wide range of d ∈ {10, 20, . . . , 100} and p ∈ {2, 4, . . . , 64}
on randomly selected tasks. From the results in Figure 6(a) and 6(b), it can be observed that MDDA
is robust with regard to different values ofd andp. Therefore, they can be selectedwithout in-depth
knowledge of specific applications.
We ran MDDA with a wide range of values for regularization parameters λ,η, and ρ on sev-

eral random tasks and compare its performance with the best baseline method. We only report
the results of λ in Figure 6(c), and the results of ρ and η are following the same tendency. We
observed that MDDA can achieve a robust performance with regard to a wide range of parame-
ter values. Specifically, the best choices of these parameters are λ ∈ [0.5, 1, 000],η ∈ [0.01, 1], and
ρ ∈ [0.01, 5].
We evaluate the convergence of MDDA through experimental analysis. From the results in

Figure 6(f), it can be observed that MDDA can reach a steady performance in only a few (T < 10)
iterations. It indicates the training advantage of MDDA in cross-domain tasks.

5.5.2 DDAN. DDAN involves three key parameters: λ,p, and ρ. Similarly to MDDA, we report
the parameter sensitivity and convergence in Figure 7. It is clear that DDAN is robust to these
parameters. Therefore, in real applications, the hyperparameters of DDANdo not have to be cherry
picked. This is extremely important in deep learning, since it is rather time-consuming to tune the
hyperparameters.
We also extensively evaluate the convergence of DDAN in Figure 7(d). It is shown that DDAN

is able to convergence quickly and reach steady performance.

5.5.3 Time complexity. We empirically check the running time of MDDA and DDAN and
present the results in Table 8. Noe that for image classification tasks, the running time of ARTL,
JGSA, and MDDA are the summation of deep feature extraction and algorithm running time, since
these algorithms require to extract features before transfer learning. It is shown that both MDDA
and DDAN can achieve efficient computing time while achieving better performance compared to
these comparison methods.

6 CONCLUSIONS AND FUTURE WORK

In this article, to solve the transfer learning problem, we propose the novel DDA concept. DDA is
able to dynamically evaluate the relative importance between the source and target domains. Based
on DDA, we propose two novel methods: the manifold DDA (MDDA) for traditional transfer learn-
ing, and DDAN for deep transfer learning. Extensive experiments on digit recognition, sentiment
analysis, and image classification have demonstrated that both MDDA and DDAN could achieve
the best performance compared to other state-of-the-art traditional and deep transfer learning
methods.
In the future, we plan to extend the DDA framework into the heterogeneous transfer learning

areas as well as apply it to more complex transfer learning situations.
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