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Abstract—Miscellaneous mini-wearable devices (e.g. wrist-
bands, smartwatches, armbands) have emerged in our life,
capable of recognizing activities of daily living, monitoring
health information and so on. Conventional activity recognition
(AR) models deployed inside these devices are generic classifiers
learned offline from abundant data. Transferring generic model
to user-oriented model requires time-consuming human effort for
annotations. To solve this problem, we propose SS-ARTMAP-AR,
a self-supervised incremental learning AR model updated from
surrounding information such as Bluetooth, Wi-Fi, GPS, GSM
data without user’s annotation effort. Experimental results show
that SS-ARTMAP-AR can gradually adapt individual users and
become more incremental intelligence.

Index Terms—activity recognition, activities of daily living,
smartwatch, incremental learning.

I. INTRODUCTION

Knowledge of activities of daily living (ADLs, e.g. walking,

running, going upstairs/downstairs) can be learned by making

use of various wearable devices (e.g. wristband, smartwatch,

armband [1][2][3]) worn or even embedded into clothes or

accessories [4], hence wearable activity recognition (AR)

techniques promote the development of ubiquitous computing

applications such as context awareness, energy expenditure

and personal healthcare. For example, wearable AR techniques

for healthcare improve user’s health conditions by collecting

information related to ADLs, analyzing it and returning the

feedback to the user.

An AR classification model is usually learned offline based

on the data collected from several users. Once done, this

model is embedded into the wearable devices permanently to

recognize ADLs for all future unknown users. Normally, such

a generic static model may not well fit for a specific user with

distinctive personalities in terms of wearing styles and ADLs.

For example, a model learned based on the data from the

dominant wrist (e.g. right wrist [5][6]) may not well work for

the users wearing device on his/her non-dominant wrist (e.g.

left wrist), or having an opposite dominant wrist. Therefore,

it would be better if the model can adjust itself adaptively by

considering the data of its single user to precisely grab his

personalities.

To deal with the problem, a lot of incremental learning

[7][8][9] and transfer learning methods [10][11] have been

proposed in literatures to adapt AR models to new domains

or individuals. In this paper, we focus on the incremental

learning mechanism. Generally, incremental learning method

consists of two stages to learn a classification model [7].

An initial model is created firstly based on a few labeled

instances as the training set, and then updated automatically

if new (labeled/unlabeled) instances come. According to the

various types of instances (labeled, unlabeled, unlabeled with

new features/attributes) which could be utilized in the second

stage, incremental learning mechanism can be divided into

three categories: supervised [7], semi-supervised [8] and self-

supervised incremental learning [9].

It is unrealistic to utilize supervised incremental learning

mechanism to update an AR model consistently. Too many

user annotations are required to generate labeled instances

for updating the model, which obviously interrupts user’s

daily living. Gladly, both semi-supervised and self-supervised

incremental learning methods do not need user annotation.

However, for semi-supervised incremental learning mecha-

nism, continuously learning unsupervised knowledge (learned

from unlabeled instances in the second stage) may degrade

its supervised knowledge (learned from labeled instances in

the first stage)[9]. Self-supervised incremental learning, on

the other hand, also learns from new experiences (more

features within unlabeled instances) without, in a certain level,

degrading its supervised knowledge [9], which makes it more

feasible to personalized AR model adaptation. In this paper,

we concentrate on the challenges of constructing an AR model

in the self-supervised incremental learning mechanism.

In the first stage of self-supervised incremental learning,

a generic model is learned based on the data of motion

sensors (accelerometer in this paper) collected from several

users’ ADLs. In the second stage, other data sources besides

motion sensors are needed to extract new features for the

unlabeled instances of the target user. Recently, dynamic

contextual information has shown its superiority in recognizing

user’s ADLs effectively and unobtrusively. For example, the

number and change rate of Bluetooth device scanned in user’s
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surroundings can help to identify whether he is taking the

subway or not [12][13]. As a consequence, features related to

contextual information of the target user are extracted as well

in the second stage of self-supervised incremental learning.

Our contributions are:

• A self-supervised incremental learning framework is pro-

posed to construct the personalized AR model for the

target user.

• Several AR models are constructed by automatically

mining its target user’s personalities, learning from the

knowledge of nearby surroundings, and updating them-

selves accordingly.

• We propose to take advantage of the contextual informa-

tion in user’s surroundings to help personalize a generic

model. According to the consistent discovery of the target

user’s particular patterns in his daily life, the model

gradually suits its target user better.

• We validate our method on real-world AR datasets.

Experiments show that those AR models can recognize

user’s ADLs accurately based on only a few labeled and

plenty of unlabeled data of the target users.

The remainder of this paper is structured as follows. Section

II discusses some related work. We present an overview of the

self-supervised learning (SSL) and Self-supervised ARTMAP

model in Section III. After that, we give detailed description

about the real-world datasets and preprocess steps in Section

IV. We validate the performance of our approach in Section

V. In the end, we conclude the paper and discuss some future

extensions.

II. RELATED WORK

In this section, we provide a brief introduction of existing

AR works in literature from different perspectives.

A. Model: offline batch mode learning/online incremental
learning

Generic AR models are conventionally constructed offline

based on the data collected beforehand. Once completed, the

model remains unchanged regardless of whoever its user is or

what kind of scenarios it is utilized. For instance, the Kung Fu

model in the wristband [14] is a static hidden Markov model

and could not adapt itself to a new user. The data distribution

is greatly different between varying users.

Recently, more and more researchers realize the phe-

nomenon that the distribution of data is heavily affected by

varying users. The performance will degrade when the model

trained on some users is used to a new user. To solve this

problem, a number of online incremental learning models have

been proposed. [7][15][16]. An Online Sequential Reduced

Kernel Extreme Learning Machine is applied to update the

initial model and adapt it to new users based on the recognition

results of high confidence level [7].A lifelong learning frame-

work from sensor data streams is constructed for predicting

user modeling, which continuously learns from their users and

adapts the system through stream-based active learning [15].

New task can be learned semi-incrementally from a partial

Fig. 1. Self-supervised ARTMAP

decision tree model which captures knowledge from a previous

task [16].

B. Universality: generic/personalized model

Personalization of activity recognition has become a topic

of interest recently. Increasing works emerge in AR literature

focusing on the personalization problem [7][15][17][18]. To

solve the problem that a model cannot accurately recognize

activities of a specific user, TransEMDT (Transfer learning

EMbedded Decision Tree) is presented which integrates deci-

sion tree and k-means clustering algorithm for personalized

activity-recognition model adaptation [17]. Authors in [18]

present “uWave” application for interaction based on personal-

ized gestures and physical manipulations of a consumer elec-

tronic or mobile device. Unlike statistical methods, “uWave”

requires a single training sample for each gesture pattern and

allows users to employ personalized gestures and physical

manipulations [18].

Specifically, Support vector machine (SVM) is a popular

supervised learning model represented as a hyperplane which

separates the data from two classes with a maximal margin

[19].Extreme learning machine (ELM) is fast single hidden

layer feedforward neural network for classification and regres-

sion with the weights between input layer and hidden layer

are randomly assigned [20]. Semi-supervised and incremental

versions [21][22][23][24] of those traditional models have

been proposed to deal with problems of unlabeled data for

training or coming one by one or chunk by chunk. Some

representative supervised, semi-supervised and incremental

models above are compared with our model in Section V.

III. SELF-SUPERVISED LEARNING FRAMEWORK

A. Framework

A self-supervised incremental learning framework is pro-

posed which consists of two stages to construct a user-oriented

AR model.See Fig. 1.

• In the first stage, called “Model Initialization Stage”, a

generic model is learned based on the labeled motion

data from different activities of multiple people.

• In the second stage, called “Model Update Stage”, the

generic model is growing to be a personalized model
based on the consistently incremental unlabeled data

328



Fig. 2. Five steps for data collection and preprocess

of a target user. Those data for model update contain

characterizations of both motion and context.

The generic model is in charge of grasping the crucial

locomotion knowledge of activities from the motion data of

people. Making the generic model as a starting point, we

are trying to construct a user-oriented model by gathering

the individual personalities of our target-user as well as the

contextual information during his ADLs.

B. Activity Recognition Model

Adaptive Resonance Theory (ART) is a cognitive and neural

theory solving the problem of how a machine can learn

knowledge quickly from the new data without forgetting

previously learned knowledge. Early ART neural networks

(e.g. Fuzzy ART [25], Gaussian ART [26]) are proposed for

unsupervised incremental learning, they incrementally learn a

set of templates called categories. ARTMAP [27], also known

as Predictive ART, is the neural network architecture for

supervised incremental learning problem. Each input activates

a single category node during both training and testing. When a

node is first activated during training, it is mapped to the class

the input belongs to. If the input activates a node in testing,

the corresponding class mapped to this node is regarded as the

prediction.

For those ART and ARTMAP networks, the input has

a fixed number of features throughout training and testing.

Self-supervised ARTMAP [9], learn partial knowledge from

labeled inputs in the first stage, then enrich itself according

to unlabeled inputs containing additional novel features in

the second stage. In this paper, a self-supervised ARTMAP

activity recognition model (SS-ARTMAP-AR) is learned for

each user within the Self-supervised learning framework.

IV. DATA COLLECTION AND PREPROCESSING

In order to validate above framework, data are collected and

preprocessed through 3 steps (Fig. 2). In the following paper,

we use the word “sample” to represent the raw sensor reading

and “instance” to describe the data generated for training a

classifier.

A. Data Collection

We collect data from three users, 2 postgraduate students

(User “A” and User “B”) and 1 office worker (User “C”) during

their daily life for more than 5 months in total. Each user is

provided with a Shimmer 2r device [28] containing a tri-axial

accelerometer and a Bluetooth module to communicate with

an android smartphone paired with the Shimmer(Fig. 3). The

Shimmer is worn in user’s non-dominant (left) wrist, where the

acceleration samples are collected and transmitted wirelessly

to the phone according to an Android application “Shimmer

Fig. 3. Devices and applications for data collection and user annotation

Data” (Fig. 3), which displays the data as well as saves them

in the phone’s extra storage card.

Besides “Shimmer Data”, another two applications “Sensor

List” and “Activity Recorder” also run on the phone (Fig.

3). “Sensor List” is in charge of collecting the context data

in surroundings, including the scanned Bluetooth devices,

nearby Wi-Fi Access Points (APs), GPS readings if any,

Global System for Mobile communication (GSM). Thorough

descriptions of the attributes can be found in [29][30][31][32].

During the data collection process, users are required

to annotate the ground truth (activity) with the applica-

tion “Activity Recorder” (Fig. 3). We get the ground truth

〈activityType, beginT ime, endT ime〉 for each activity col-

lected.

The sampling rate of the accelerometer is 102.4Hz and

the value ranges from −6g to +6g. The scanning process

of Bluetooth devices involves an inquiry scan of about 12

seconds, followed by a page scan. Each scanned Bluetooth

device is returned in the form of a Broadcast service[29]. Due

to the lengthy time cost in starting and scanning procedures

of Bluetooth and Wi-Fi, it collects Bluetooth and Wi-Fi data

every 30 seconds. One GPS sample is collected per minute

owing to the long signal propagation distance between the

satellite and the user.Besides, we collect GSM data every 5

seconds.

12 distinct activities are collected by user “A” and “B”, and

9 activities by user “C” Table I. Basically, data of each activity

are collected for more than 1 hour. In total, we get 238 hours

of collected data.

B. Feature Extraction

1) Accelerometer data

For a window of acceleration samples (data of 5 seconds)

in each axis (X/Y/Z-axis), we extract fourteen features from

time and frequency domains in a window of samples by

sliding window mechanism (window size=500, step size=100).
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Together we get forty-two features from three axes to generate

an acceleration instance.

2) Bluetooth data

For each scanned Bluetooth sample, the documentation for

Android SDK has defined its major class from 12 “Major

Device Classes”, as well as its minor class from several “Minor

Device Classes” in the context of the major class assignment

[29]. Besides, we can also check the on-going bonding state

(None, Bonding, Bonded) of the scanned Bluetooth sample

[29]. In all, we extract 98 features with Boolean value (0/1)

consisting of 3 bonding states, 12 “Major Device Classes” and

83 “Minor Device Classes” for each sample. For each of the

98 features above, we count the percent of samples in the scan

whose value is 1 as the feature value. Therefore, a Bluetooth

instance contains 100 features.

3) Wi-Fi data

For the Wi-Fi samples in one scan, we count the number

of samples with distinct AP address as the first feature (“AP

#”), and calculate the average signal strength as the second

feature (“Mean level”). The percent of samples with new

AP address (“ChangeRate APAddress”), capability (“Chang-

eRate capability”), and frequency (“ChangeRate frequency”)

are also collected as the features. In all, a Wi-Fi instance owns

5 features.

4) GPS and GSM data

Each GPS sample generates a GPS instance with longitude

and latitude as its features. Each GSM sample generates a

GSM instance with 2 features. One feature is the signal

strength “bsss”, the other feature “ChangeRate GSM” is a

Boolean value representing whether “cid” or “lac” is changed

or not compared with the last GSM sample.

C. Concatenation and Feature Selection

For all the instances of accelerometer/ Bluetooth/ Wi-Fi/

GPS/ GSM sensors, we concatenate their features according

to the timestamps of instances to create new instances.

In order to remove redundant features from the feature set,

we utilize the supervised attribute filter “Normalize Filter” in

Weka [33] to select the optimal feature subset for each user.

V. RESULTS

A. Accuracy

The performance of SS-ARTMAP-AR is validated on each

user’s dataset. For simplicity, we randomly select 3 labeled

instances with acceleration features, 500 unlabeled instances

with acceleration, Bluetooth, Wi-Fi, GPS, GSM features se-

lected, from each class of the dataset. The labeled/unlabeled

instances are the training data in Model Initialization Stage

/ Model Update Stage of SS-ARTMAP-AR. Another 300

instances from each class constitute the testing set. The

prediction accuracies of 3 generated SS-ARTMAP-AR models

on each corresponding testing set are listed in Table I.

Generally speaking, the accuracy varies on different users

and classes. For 4 typical daily activities (“Walking”, “Bicy-

cling”, “Climbing stairs”, “Taking elevator”), accuracy exceeds

50% for all the 3 users, which means the SS-ARTMAP-AR

TABLE I
TESTING ACCURACY OF SS-ARTMAP-AR

ID Activity
Accuracy

A B C
1 Walking 0.73 0.57 0.78
2 Bicycling 0.97 0.94 0.99
3 Climbing stairs 0.83 0.83 0.76
4 Taking elevator 0.72 0.65 0.53
5 Taking the subway 0.51 0.45 0.62
6 Having a meal 0.81 0.29 0.63
7 Taking a nap 0.87 0.85 /
8 Meeting 0.37 0.25 /
9 Shopping 0.78 / 0.70
10 Watching movie 0.90 / 0.67
11 Taking the bus / 0.39 0.56
12 Riding on the back of a bicycle 0.99 / /
13 Watching table tennis game 0.29 / /
14 Taking a taxi / 0.55 /
15 Fitness training / 0.62 /
16 Having fun in KTV / 0.43 /

model has robust recognition ability on the ADLs. Besides,

SS-ARTMAP-AR model has an accuracy of more than 50% on

3 high-level semantic activities (“Taking a nap”, “Shopping”,

“Watching a movie”) of 2 users, which is interesting since

those activities are quite similar in nature but different in en-

vironmental circumstances. For instance, an activity of “Shop-

ping” is mixed with some “Walking” and special gestures of

picking up/put down some products. An accuracy of 99% is

achieved on “Riding on the back of a bicycle” class of user

“A”, which is even better than the Bicycling class. However,

SS-ARTMAP-AR also shows poor predictive ability on 3

classes (“Meeting”, “Watching table tennis game”, “Having

fun in KTV”) owning to their ambiguous characteristics on

existing dataset.

B. Comparison with other approaches

In this section, we evaluate the performance of SS-

ARTMAP-AR model and compare it with several represen-

tative supervised and semi-supervised methods (Fig. 4). Com-

parison methods are divided into two groups:“SVM group”

and “ELM group”. Four methods are contained in “SVM

group” and five in “ELM group”. Among them, “SVM *”

[19] and “OSELM *” [23] are supervised incremental learning

methods; “S3VM *” [21] and “SSELM *” [22] are semi-

supervised incremental learning methods. “ Acc” and “ All”

represents instances for training and testing the model contains

only acceleration features and all kinds of features (features

from acceleration, Bluetooth, WiFi, GPS and GSM) respec-

tively.

For all the supervised incremental methods introduced

above,the feature sets of initial model generation and mod-

el update are the same(“ Acc” or “ All”). Differently,

“FAOSELM” [24] is a specialized supervised incremental

method in which an initial model is trained based on accel-

eration features, and updated based on data with all features

(acceleration, Bluetooth, Wi-Fi, GPS and GSM). “FAOSELM”

is very similar to SS-ARTMAP-AR model except that data for

model update are with labels for the former, and no labels is
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Fig. 4. Performance comparison of SS-ARTMAP-AR and supervised, semi-
supervised methods in “SVM group” and “ELM group”

needed for the latter. To compare the results of four methods

(Fig. 4) in “SVM group”,“ELM group” on 3 users’ data we can

conclude that: First, the performance of supervised methods

are better than semi-supervised methods, which means user

annotations are beneficial in constructing efficient AR models.

Second, “ All” methods attain higher accuracy than “ Acc”

methods, which illustrates the significance of context features

in classifying ADLs. Third, the performance of methods in

“SVM group” is much clearer and more distinguishable than

“ELM group”.

Among all the methods in comparison, SS-ARTMAP-AR,

“FAOSELM” and “SVM All” gain highest predictive ability

on the dataset of User “B” (Fig. 4(b)), which is significant

achievement for SS-ARTMAP-AR since large amounts of

annotations are avoided. For datasets of User “A” and “C”,

“FAOSELM” and “SVM All” are a little bit superior to SS-

ARTMAP-AR (Fig. 4(a),(c)). Still, these three methods are

much better than the rest.

Fig. 5. Performance comparison of self-supervised ARTMAP-AR and semi-
supervised ARTMAP-AR

C. Contribution of environmental features

In this section, we want to evaluate the contribution of

environmental features (Bluetooth, Wi-Fi, GPS, GSM features)

to the overall accuracy of SS-ARTMAP-AR model. For the

sake of comparison, we also train an SS-ARTMAP-AR model

with labeled instances in Model Initialization Stage, and

unlabeled instances in Model Update Stage, both of which

contain acceleration features only. We call it “Semi-supervised

ARTMAP”, since it is generated in a Semi-supervised learning

framework. Given the same set of labeled instances in Model

Initialization Stage, their predictive accuracy on the same

testing set are compared (Fig. 5).

The accuracy increases for both. Obviously, the accuracy

of Self-supervised ARTMAP goes faster and more stable than

Semi-supervised ARTMAP model owing to the environmental

Bluetooth, Wi-Fi, GPS, GSM features. Therefore, we can

conclude that: environmental features, which contains a great

deal of personalized characteristics to the data of on-going

activities, can increase classification performance of an activity

recognition model.

D. Effect of number of labeled instance

It is necessary to analyze the effect of the number of

labeled instances on the recognition ability of SS-ARTMAP-

AR, which is really important in practical application since

the label of instances comes from costly and intrusive user

annotation. For the whole dataset of User “A”, we randomly

select 100 instances from each class to construct the testing

set. The number of labeled instances for training from each

class varies from 1 to 20. For each labeled instance number,

we record the least number of unlabeled instances (see the

histogram in Fig. 6) it needs in Model Update Stage to achieve

an testing accuracy of more than 50% on the testing set. We

look for the “least number” from 10, 20, 30,... until the proper

one is found. The actual accuracy of SS-ARTMAP-AR model

learned on the basis of different size of labeled instances are

shown in the upper part of Fig. 6. From the results we can

conclude: if there are only 2 labeled instances (data of more

than 15 seconds) from each class are in Model Initialization

Stage, it needs at least 10 unlabeled instances in Model Update

Stage to achieve an accuracy of large than 50%. It shows

the fact that SS-ARTMAP-AR does not rely on massive user

annotations. Performance of SS-ARTMAP-AR does benefit

from more labeled data, but only a few labeled data, e.g. with
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Fig. 6. Performance comparison of SS-ARTMAP-AR with different number
of labeled instances in Model Initialization Stage

15 seconds user annotations for each activity (“activity-level

one-off annotations”), are still enough for high recognition

performance.

VI. CONCLUSION

In this paper, we construct SS-ARTMAP-AR, a self-

supervised incremental learning model to recognize ADLs of

users with mini-wearable devices. SS-ARTMAP-AR is firstly

initialized using a few motion data with relevant annotations,

then updated incrementally by the motion and context data

without any user annotation effort. According to the consistent

discovery of regular patterns in daily life, SS-ARTMAP-AR

gradually adapts the user and make the device more intelligent.

In the future, we plan to actively select informative instances

in personalizing the generic activity recognition models for

mini-wearable device users.
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