

IJCAI-ECAI 2022 Tutorial on Domain Generalization

Jindong Wang Microsoft Research Asia

Haoliang Li City University of Hong Kong

Sinno Jialin Pan Nanyang Technological University

Tutorial website: https://dgresearch.github.io/

The breakthrough of AI

TEXT DESCRIPTION

An astronaut Teddy bears A bowl of soup

that is a portal to another dimension that looks like a monster as a planet in the universe

as a 1960s poster as mixed media with needlework as digital art

TEXT DESCRIPTION

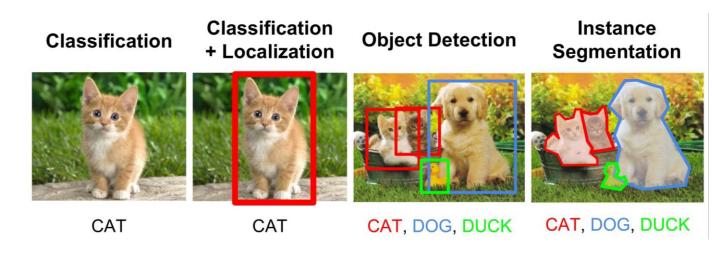
An astronaut Teddy bears A bowl of soup

mixing sparkling chemicals as mad scientists shopping for groceries working on new AI research

as kids' crayon art on the moon in the 1980s underwater with 1990s technology

https://openai.com/dall-e-2/#demos

Artificial intelligence

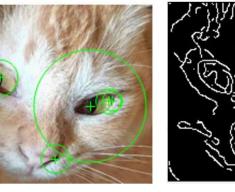


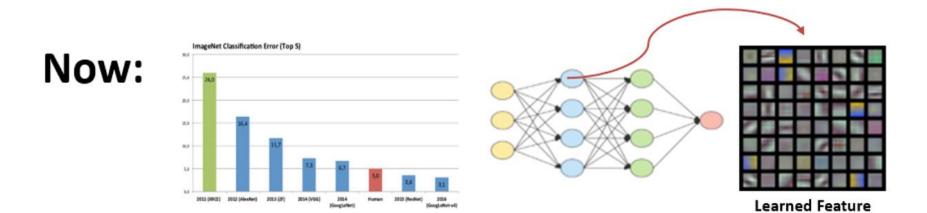
Background

• Computer vision: How do we represent an image?

Past:

edges, lines, contours





Artificial intelligence?

• More artificial, more intelligence...

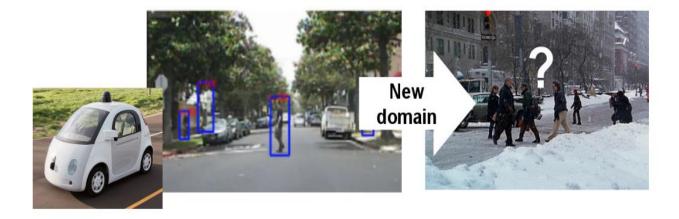
"Current systems are not as robust to changes in distribution as humans, who can quickly adapt to such changes with very few examples"

Yoshua Bengio, Geoffrey Hinton, Yann Lecun Deep learning for AI Com. ACM 2021

Figure credit: https://cn.nytimes.com/technology/20181126/china-artificial-intelligence-labeling/

Background

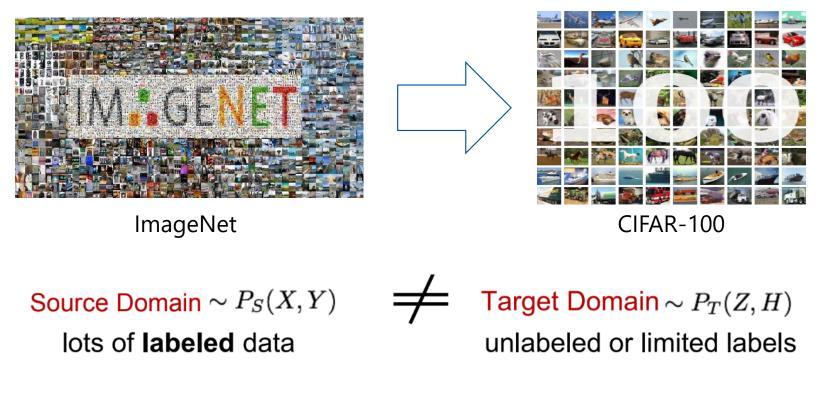
- · Models do not generalize well to new domains; not like humans!
- Are big data always available?
 - It is impossible to consider data in **all scenarios**.
 - · Data can be protected under **privacy regulation**.



- Pan et al. A Survey on Transfer Learning. IEEE TKDE 2010.
- Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.

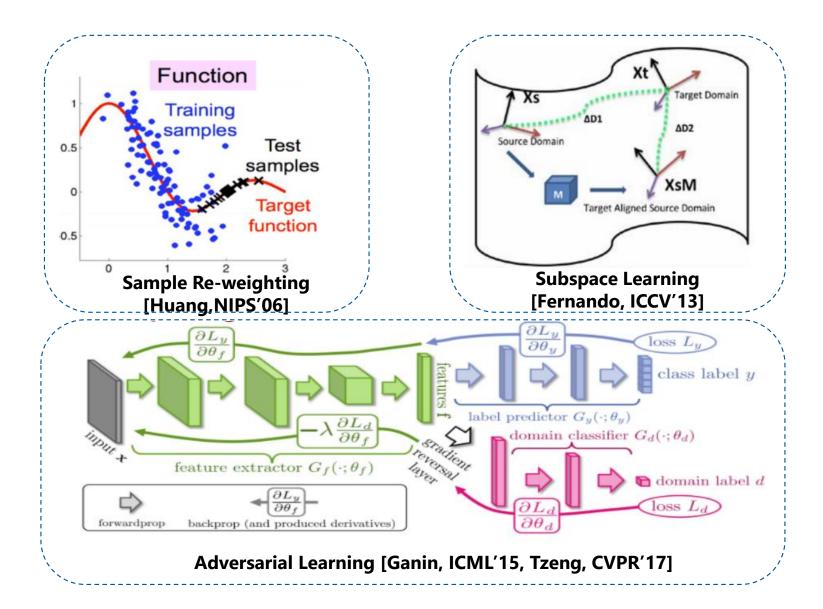
Domain adaptation

 \cdot DA: Train on source and adapt to target

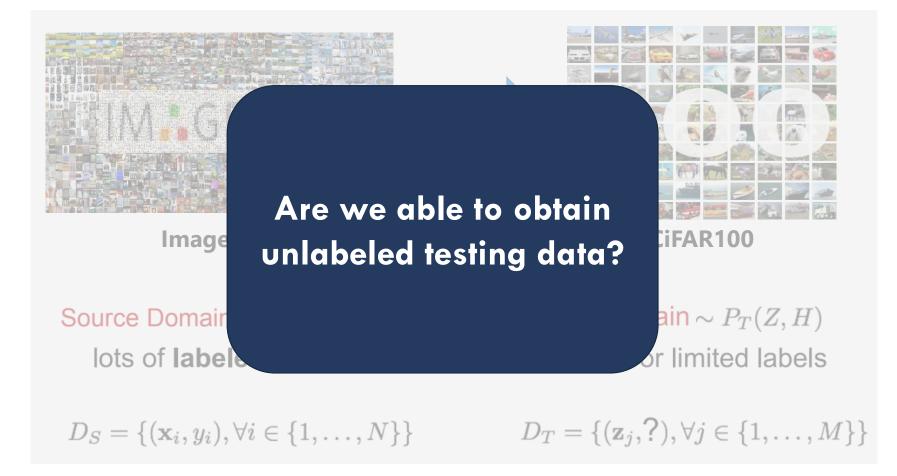


 $D_{S} = \{ (\mathbf{x}_{i}, y_{i}), \forall i \in \{1, \dots, N\} \} \qquad D_{T} = \{ (\mathbf{z}_{i}, ?), \forall j \in \{1, \dots, M\} \}$

Domain adaptation



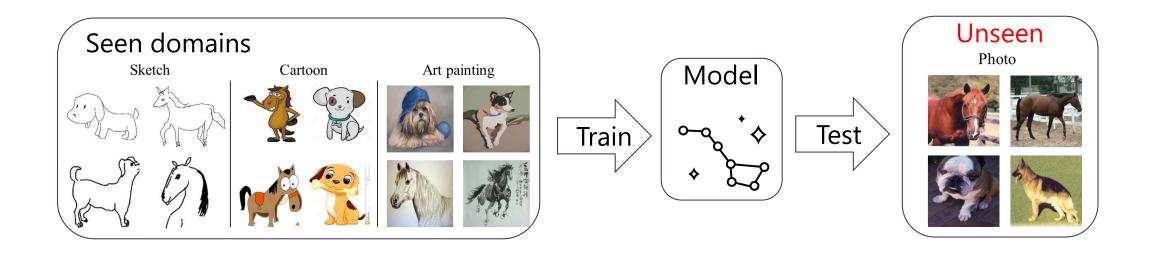
Domain adaptation: Train on Source and Adapt to Target



Domain adaptation: Train on Source and Adapt to Target

Domain Generalization

 DG: Build a system for previously *unseen* datasets given one or multiple training datasets.



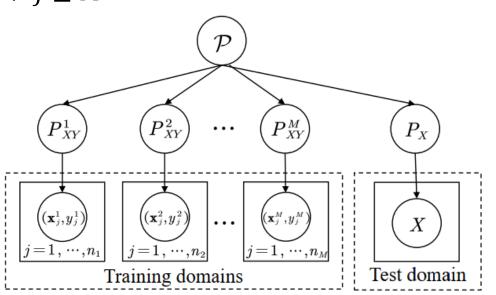
Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.

Formal definition of domain generalization

· Definition

- Given: *M* training domains $S = \{S_i \mid i = 1, \dots, M\}$, where $S_i = \{(x_j^i, y_j^i)\}_{i=1}^{n_i}$
- · Condition:
 - · Joint distributions are different, i.e., $P_{XY}^i \neq P_{XY}^j$, $1 \le i \ne j \le M$
 - · Test domain **cannot be accessed** in training
- · Goal:
 - $\cdot\,$ Achieve minimum test error on test domain
 - $\cdot \quad (P_{XY}^i \neq P_{XY}^{test})$

 $\min_{h} \mathbb{E}_{(\mathbf{x},y) \in \mathcal{S}_{test}}[\ell(h(\mathbf{x}),y)]$



Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.

Different DG settings The general setting; • Different DG settings Focus of this tutorial Situation **Setting** *Traditional* domain generalization The traditional setting Single-source domain generalization Only 1 source domain available for training Semi-supervised domain generalization Training domains are partially labeled *Federated* domain generalization Training data cannot be accessed by central server Training and test domains have different label spaces **Open** domain generalization **Unsupervised** domain generalization Training domains are totally unlabeled

- Peng X, Qiao F, Zhao L. Out-of-domain Generalization from a Single Source: A Uncertainty Quantification Approach[J]. arXiv preprint arXiv:2108.02888, 2021.
- Lin L, Xie H, Yang Z, et al. Semi-Supervised Domain Generalization in Real World: New Benchmark and Strong Baseline[J]. arXiv preprint arXiv:2111.10221, 2021.
- Zhang L, Lei X, Shi Y, et al. Federated Learning with Domain Generalization[J]. arXiv preprint arXiv:2111.10487, 2021.
- Shu Y, Cao Z, Wang C, et al. Open domain generalization with domain-augmented meta-learning. CVPR 2021.
- Qi L, Wang L, Shi Y, et al. Unsupervised Domain Generalization for Person Re-identification: A Domain-specific Adaptive Framework[J]. arXiv preprint arXiv:2111.15077, 2021.

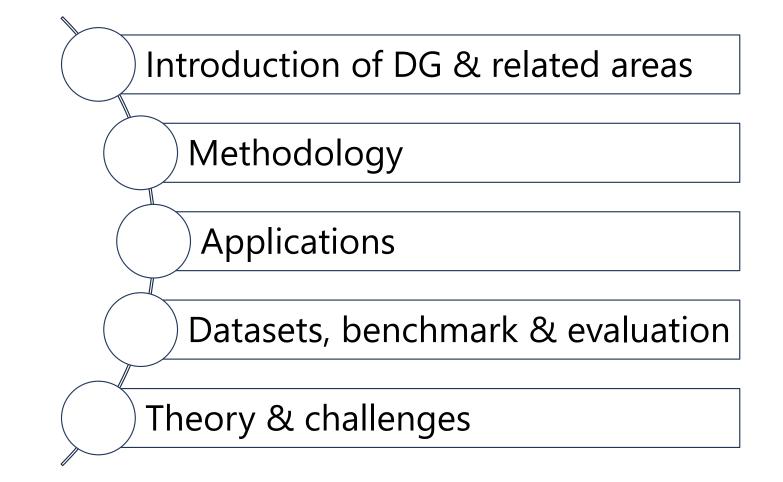
Relation with existing paradigms

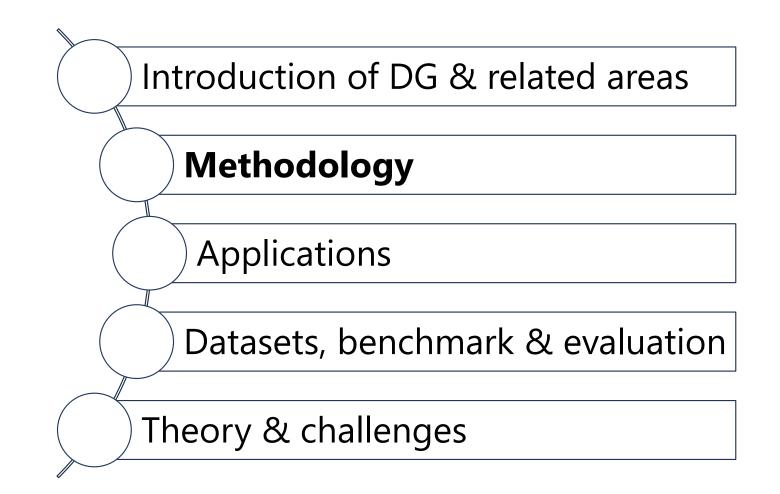
Learning paradigm	Training data	Test data	Condition	Test access
Multi-task learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	$\mathcal{Y}^i \neq \mathcal{Y}^j, 1 \leq i \neq j \leq n$	\checkmark
Transfer learning	\mathcal{S}^{src} , \mathcal{S}^{tar}	\mathcal{S}^{tar}	$\mathcal{Y}^{src} eq \mathcal{Y}^{tar}$	\checkmark
Domain adaptation	$\mathcal{S}^{src}, \mathcal{S}^{tar}$	\mathcal{S}^{tar}	$\mathcal{X}^{src} eq \mathcal{X}^{tar}$	\checkmark
Meta-learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^{n+1}	$\mathcal{Y}^i \neq \mathcal{Y}^j, 1 \leq i \neq j \leq n+1$	\checkmark
Lifelong learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^i arrives sequentially	\checkmark
Zero-shot learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^{n+1}	$\mathcal{Y}^{n+1} eq \mathcal{Y}^i, 1 \leq i \leq n$	×
Domain generalization	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^{n+1}	$P(\mathcal{S}^i) \neq P(\mathcal{S}^j), 1 \leq i \neq j \leq n+1$	×

DG has close relationship with other paradigms, but also different from them

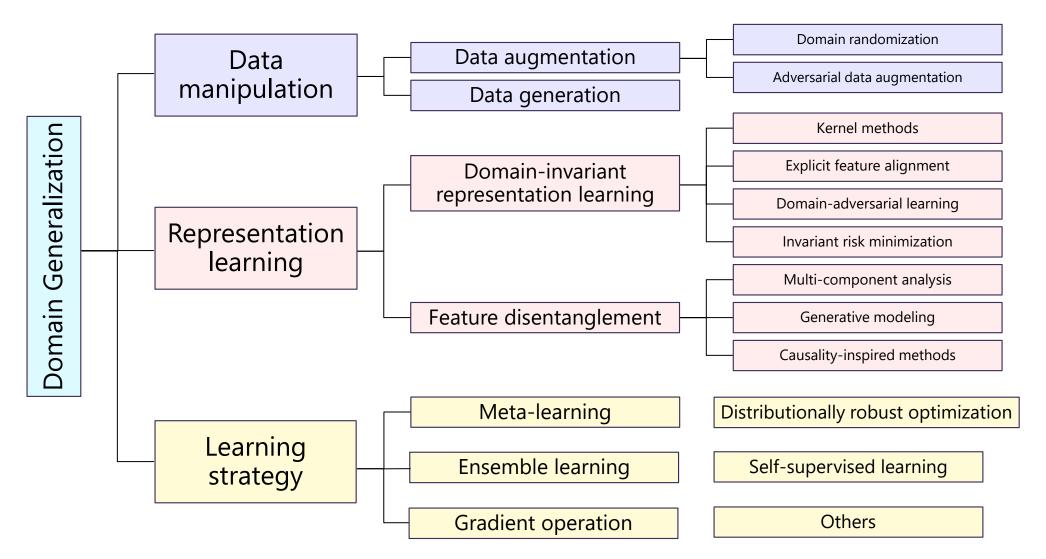
Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.

Overview of this tutorial





Overview of DG methodology



Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.

Data manipulation for DG

Data manipulation

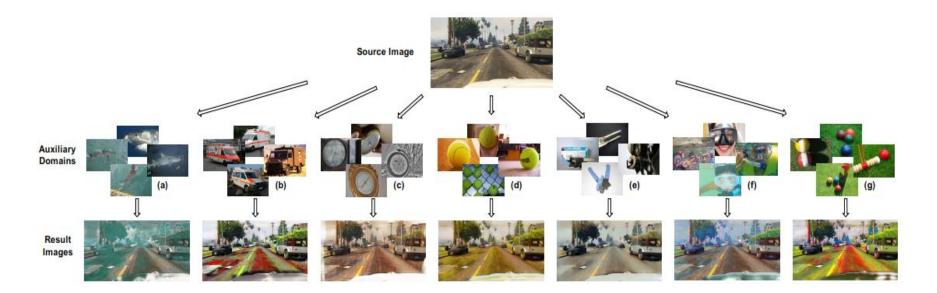
- \cdot Data quantity and quality are key factors of generalization
 - Increase *quality* and *quantity*

 $\min_{h} \mathbb{E}_{\mathbf{x},y}[\ell(h(\mathbf{x}),y)] + \mathbb{E}_{\mathbf{x}',y}[\ell(h(\mathbf{x}'),y)]$

$$\mathbf{x'} = \mathrm{mani}(\mathbf{x}) ig \{ egin{array}{c} \mathsf{Data augmentation} \ \mathsf{Data generation} \end{array}
ight.$$

Data augmentation

- \cdot Typical augmentation
 - Rotation, noise, color...
- Domain randomization (DR)
 - Randomly draw K real-life categories from ImageNet for stylizing the synthetic images.



Yue et al. Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization without Accessing Target Domain Data. ICCV, 2019.

Domain randomization

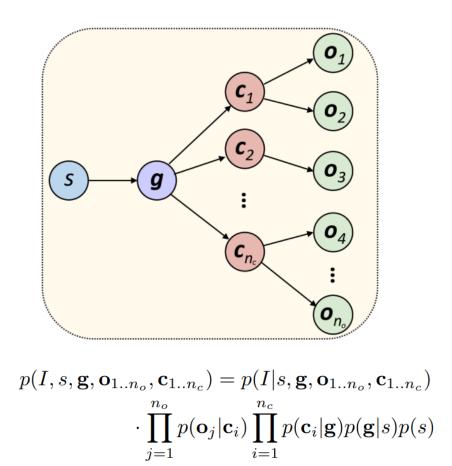
Domain randomization through graphics software.

Sim->Real robot control

Synthetic images -> Real images

- Tobin, et al. Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. IROS 2017.
- Tremblay et al. Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization. CVPR workshop 2018.

Context-aware randomization



Prakash et al. Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data. 2018.

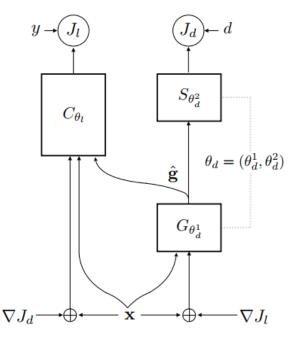
Adversarial data augmentation

- · CrossGrad: Adversarially augment data via gradient training
 - Generate data that are with same label y, but different domain label d

$$\mathbf{x}'_i = \mathbf{x}_i + \epsilon \nabla_{\mathbf{x}_i} J_d(\mathbf{x}_i, d_i)$$

- · ADV augmentation
 - · Learning the *worse-case* distribution to enable generalization

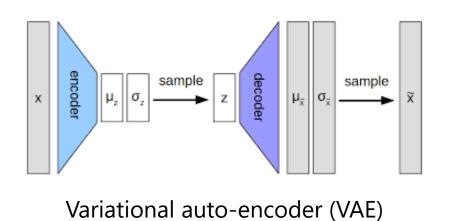
 $\underset{\theta \in \Theta}{\operatorname{minimize}} \sup_{P} \left\{ \mathbb{E}_{P}[\ell(\theta; (X, Y))] : D_{\theta}(P, P_{0}) \leq \rho \right\}$

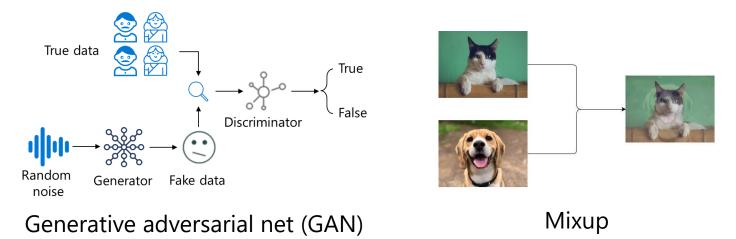


- Shankar et al. Generalizing across Domains via Cross-Gradient Training. ICLR 2018.
- Volpi, et al. Generalizing to Unseen Domains via Adversarial Data Augmentation. NeurIPS 2018.

Data generation

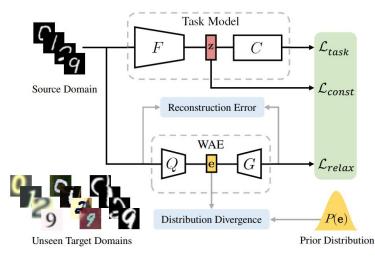
- · Directly generate data
 - · *Learning* to generate, instead of randomization / adversarial augmentation (Fixed scheme)



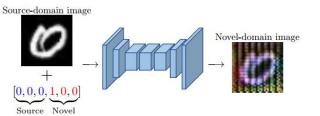


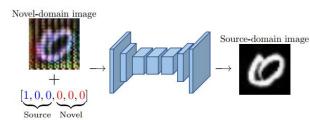
- Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv:1312.6114, 2013.
- Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.
- Zhang H, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization[J]. arXiv preprint arXiv:1710.09412, 2017.

Data generation



VAE for generation





Forward cycle

Backward cycle

Real Image from

Domain 1

Conditional GAN for generation

- Qiao et al. Learning to Learn Single Domain Generalization. CVPR 2020.
- Rahman et al. Multi-component Image Translation for Deep Domain Generalization. 2020.
- Zhou et al. Learning to Generate Novel Domains for Domain Generalization. ECCV 2020.
- Somavarapu et al. Frustratingly Simple Domain Generalization via Image Stylization. 2020.

G_{2} G_{3} G_{4} G_{4} G_{5} G_{5

 G_1

Multi-component generation

Synthetic Image

from Domain 2

Synthetic Image

from Domain 3

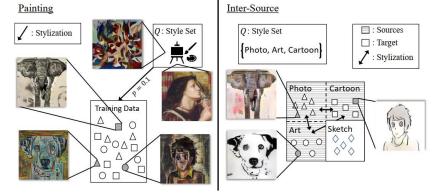
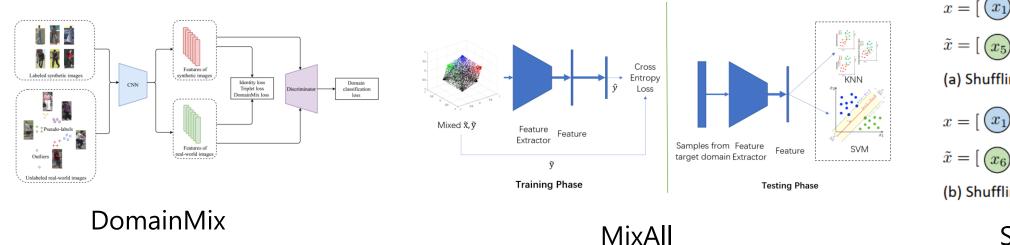


Image stylization

Mixup



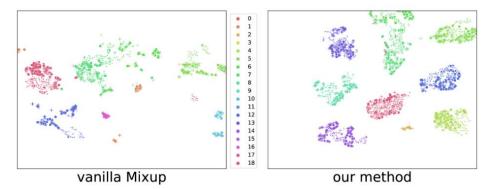
- $(x_5)(x_6)$] (x_3) (x_2) (x_4) (x_4) (x_2) (x_6) (x_3) (a) Shuffling batch w/ domain label (x_3) (x_6) (x_{2}) (x_4) (x_5) (x_1) (x_5) (b) Shuffling batch w/ random shuffle
 - Style Mixup

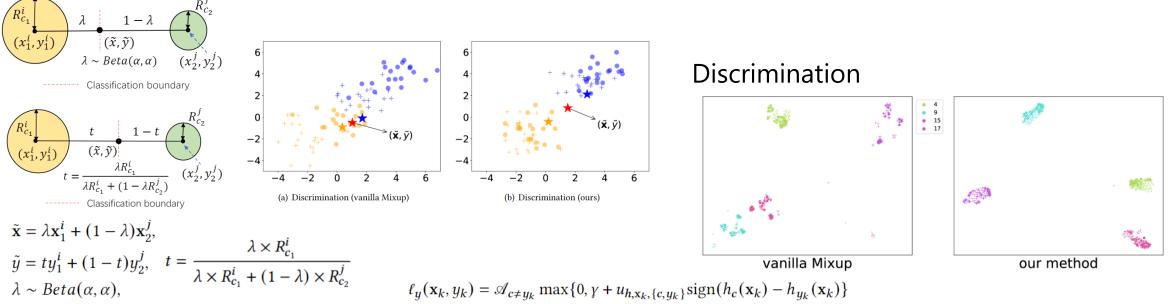
- Wang et al. DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations. 2020.
- Wang et al. Heterogeneous domain generalization via domain mixup. ICASSP 2021.
- Zhou et al. Domain generalization with mixstyle. ICLR 2021.

Data generation for DG

- \cdot Is vanilla Mixup enough for DG?
 - · No.
 - · Consider semantic range.
 - · We also need a large margin.
 - **SDMix**: Semantic-Discriminative Mixup.

Semantic range





Lu et al. Semantic-Discriminative Mixup for Generalizable Sensor-based Cross-domain Activity Recognition. ACM IMWUT, 2022.

Summary of data manipulation

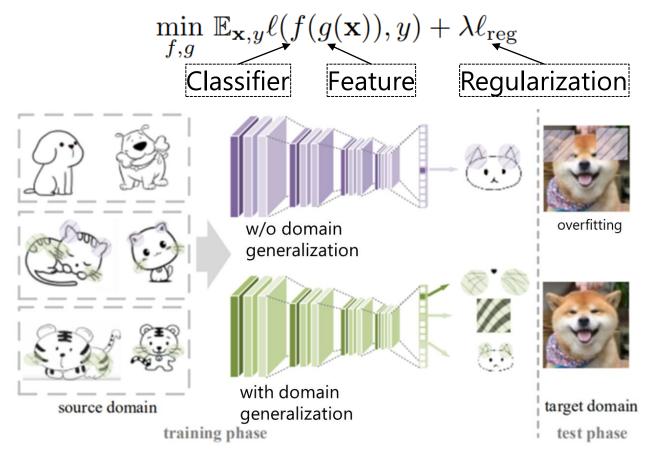
· Advantages

- $\cdot\,$ Easy to understand and simple to implement
- $\cdot\,$ General to all kinds of data and networks
- \cdot Potential disadvantages
 - $\cdot\,$ Lack of theoretical guarantee
 - $\cdot\,$ Restricted by quality of training data

Representation learning for DG

Representation Learning

- · Learning domain-invariant representations
 - · Learning features which are expected to be better generalized to unseen target domain.



Representation learning

- \cdot How to learn generalized representations for DG?
 - Kernel-based methods
 - Domain adversarial learning
 - Explicit feature alignment
 - Invariant risk minimization

Kernel-based methods

- \cdot Using kernel methods to learn domain-invariant features
 - · DICA: domain-invariant component analysis

$$\widehat{\mathbb{V}}_{\mathcal{H}}(\mathcal{BS}) = \operatorname{tr}(\widetilde{K}Q) = \operatorname{tr}(B^{\top}KQKB)$$

• TCA: Transfer Component Analysis

$$\min_{W} tr(W^T K L K W) + \mu tr(W^T W), \text{ s.t. } W^T K H K W = I.$$

- Blanchard et al. Generalizing from Several Related Classification Tasks to a New Unlabeled Sample. NeurIPS 2011.
- Muandet et al. Domain Generalization via Invariant Feature Representation. ICML 2013.
- Grubinger et al. Domain Generalization Based on Transfer Component Analysis. IWANN 2015.

Kernel-based methods

- Marginal distribution adaptation
 - $Distance(D_s, D_t) \approx MMD(P_s(x), P_t(x), f)$

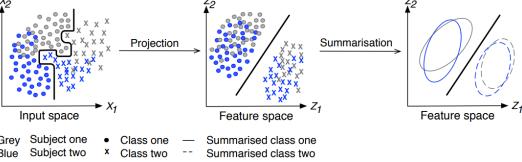
$$= \sup_{f \in \mathcal{F}} \mathbb{E}_P \left[\frac{1}{m} \sum_{i=1}^m f(x_i) - \frac{1}{n} \sum_{j=1}^n f(y_j) \right]$$

- (raw version) = $tr(A^T X M X^T A)$
- (kernel version) = tr(KM) $X = [X_s, X_t] \in \mathbb{R}^{d \times (m+n)}, A \in \mathbb{R}^{(m+n) \times (m+n)}$

$$K = \begin{bmatrix} K_{s,s}, K_{s,t} \\ K_{t,s}, K_{t,t} \end{bmatrix} \quad M_{i,j} = \begin{cases} \frac{1}{m^2}, x_i, x_j \in D_s \\ \frac{1}{n^2}, x_i, x_j \in D_t \\ \frac{-1}{mn}, otherwise \end{cases}$$
 [1] Pan et al. Domain adaptation via transfer component analysis. IEEE TNN 2011.

Kernel-based methods

- \cdot More than just distribution adaptation
 - ESRand: Elliptical Summary Randomisation (ESRand)
 - $\cdot \,$ comprises of a randomised kernel and elliptical data summarization
 - projected each domain into an ellipse to represent the domain information and then used some similarity metric to compute the distance. $\frac{x_2}{x_2}$

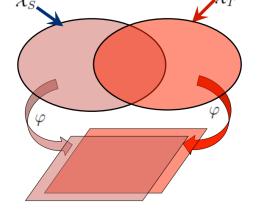


- SCA: scatter component analysis
 - Adopted Fisher's discriminant analysis to minimize the discrepancy of representations from the same class and the same domain, and maximize the discrepancy of representations from the different classes and different domains

- Erfani S, Baktashmotlagh M, Moshtaghi M, et al. Robust domain generalisation by enforcing distribution invariance. AAAI 2016.
- Ghifary et al. Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization. TPAMI 2017.

Explicit feature alignment

- Explicit distance: $R(\cdot, \cdot) \approx Distance(D_s, D_t)$
 - Goal: $f^* = \arg \min_f \frac{1}{m} \sum_{i=1}^m L(f(x_i), y_i) + \lambda \cdot Distance(D_s, D_t)$
 - Kernel-based distance
 - Maximum mean discrepancy (MMD) ^[1]
 - · KL-divergence
 - \cdot Cosine similarity
 - · Geometrical distance
 - Geodesic flow kernel (GFK) [2]
 - Correlation alignment (CORAL)^[3]
 - Riemannian manifold [4]



- [1] Pan et al. Domain adaptation via transfer component analysis. IEEE TNN 2011.
- [2] Gong et al. Geodesic flow kernel for unsupervised domain adaptation. CVPR 2012.
- [3] Sun et al. Return of frustratingly easy domain adaptation. AAAI 2016.
- [4] Baktashmotlagh et al. Domain adaptation on statistical manifold. CVPR 2014.

Explicit distance

- Maximum mean discrepancy (MMD)
 - Given $x \sim P, y \sim Q, f$ is a feature map: $x \to \mathcal{H}$, where \mathcal{H} is reproducing kernel Hilbert space (RKHS), then

$$MMD(P,Q,\mathcal{F}) \coloneqq \sup_{f \in \mathcal{F}} \mathbb{E}_P[f(x)] - \mathbb{E}_Q[f(y)]$$

• Empirical estimate

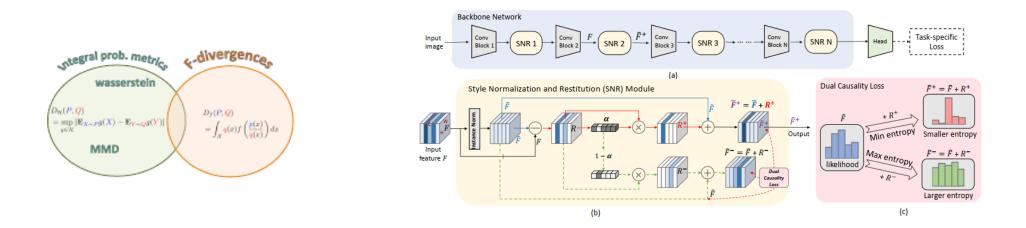
$$MMD(P,Q,\mathcal{F}) \coloneqq \sup_{f \in \mathcal{F}} \mathbb{E}_P \left[\frac{1}{m} \sum_{i=1}^m f(x_i) - \frac{1}{n} \sum_{j=1}^n f(y_j) \right]$$

Theorem: MMD(P, Q, F) = 0 iff P = Q, when $\mathcal{F} = \{f | ||f||_{\mathcal{H}} \le 1\}$ is a unit ball in a RKHS, provided that \mathcal{H} is universal.^[1]

[1] Alexander J. Smola. Maximum mean discrepancy. ICONIP 2016, Hong Kong. http://alex.smola.org/teaching/iconip2006/iconip_3.pdf

Explicit feature alignment

- \cdot Learning shareable information across domain
 - Maximum mean discrepancy: $MMD(\mathcal{F}, P_X, P_Y) = \sup_{\|f\|_{\mathcal{H}\leq 1}} (\mathbb{E}_p(f(x)) \mathbb{E}_p(f(y)))$
 - KL Divergence: $KL(q(\mathcal{Z}|\mathcal{X})||\mathcal{N} \sim (0,1))$
 - Correlation alignment: $\ell_{CORAL} = \frac{1}{4d^2} \|C_S C_T\|_F^2$

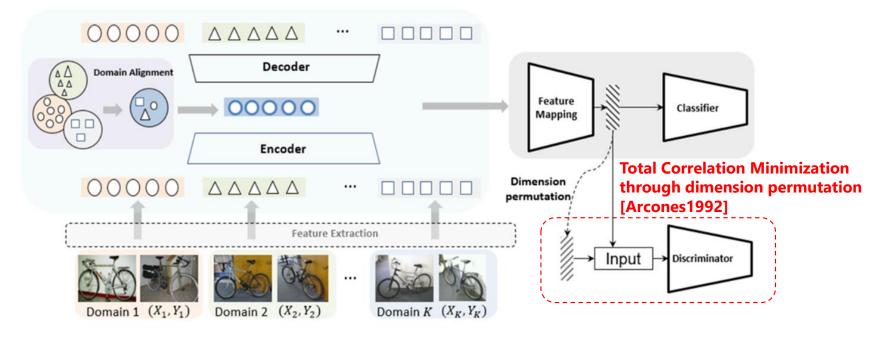


- Ya Li, et al., Deep domain generalization via conditional invariant adversarial networks, ECCV 2018
- Haoliang Li, et al., Domain Generalization for Medical Imaging Classification with Linear-Dependency, NeurIPS, 2020
- Jin X, Lan C, Zeng W, et al. Style Normalization and Restitution for Domain Generalization and Adaptation, Arxiv, 2021.

Multi-layer Feature Learning

- · Feature disentanglement at deep layer.
 - Neuron independence regularization

 $P(H^1, H^2, ..., H^{d'}) = P(H^1)P(H^2) ... P(H^d)$



[Arcones1992] M. A. Arcones and E. Gine, "On the bootstrap of u and v statistics," The Annals of Statistics, pp. 655–674, 1992.

Domain-adversarial training

- Implicit distance: $R(\cdot, \cdot) \approx Separability(D_s, D_t)$
 - Goal: $f^* = \arg \min_f \frac{1}{m} \sum_{i=1}^m L(f(x_i), y_i) + \lambda \cdot Separability(D_s, D_t)$
 - How to measure Separability (D_s, D_t) ?
 - $\cdot\,$ Domain discriminator in generative adversarial nets (GAN) $^{[1]}$
 - Objective: $\ell_{adv} = \mathbb{E}_{z \sim P(z)} \log (1 D(G(z))) + \mathbb{E}_{x \sim P_{img}(x)} \log D(x)$
 - Train: $\min_{G} \max_{D} \ell_{adv}$
 - How to use GAN for transfer?

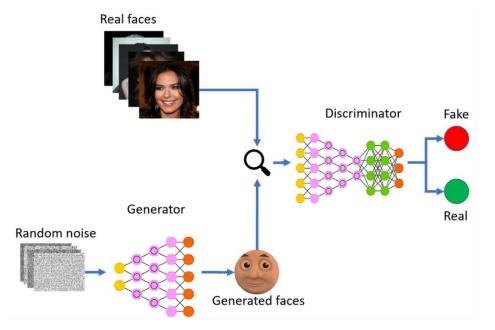
[1] Ganin et al. Unsupervised domain adaptation by backpropagation. ICML 2015.

Figure: https://becominghuman.ai/generative-adversarial-networks-gans-human-creativity-2fc61283f3f6

GANs

\cdot Generative adversarial nets

· GAN -> transfer learning -> domain generalization



GAN	GAN-based DA	GAN-based DG
Real faces	Source domain	Domain 1
Random noise	Target domain	Domain 2
Generator	Generator	Generator
Discriminator	Discriminator	Discriminator

Figure: https://medium.com/sigmoid/a-brief-introduction-to-gans-and-how-to-code-them-2620ee465c30

DANN

- Domain adversarial neural network (DANN)^[1]
 - Feature extractor: $G_f(\cdot; \theta_f)$
 - Label predictor: $G_y(\cdot; \theta_y)$
 - Domain classifier: $G_d(\cdot; \theta_d)$

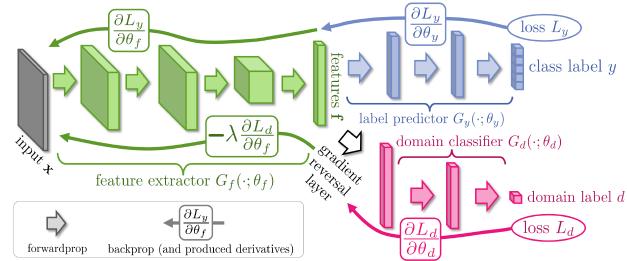


Figure: Ganin et al. Unsupervised domain adaptation by backpropagation. ICML 2015.

DANN

- \cdot Training of DANN
 - · Objective:

$$E\left(\theta_{f},\theta_{y},\theta_{d}\right) = \sum_{\mathbf{x}_{i}\in\mathcal{D}_{s}}L_{y}\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}\right)\right),y_{i}\right) - \lambda\sum_{\mathbf{x}_{i}\in\mathcal{D}_{s}\cup\mathcal{D}_{t}}L_{d}\left(G_{d}\left(G_{f}\left(\mathbf{x}_{i}\right)\right),d_{i}\right)$$

• Learning:

Classification loss

Separation loss

 \cdot Minimize feature extraction and classification loss

$$(\hat{\theta}_{f}, \hat{\theta}_{y}) = \arg\min_{\theta_{f}, \theta_{y}} E\left(\theta_{f}, \theta_{y}, \theta_{d}\right)$$

 \cdot Maximize domain confusion

• Stochastic gradient descent

• Problem: λ is hard to implement in SGD

$$\hat{\theta}_{d}) = \arg\max_{\theta_{d}} E\left(\theta_{f}, \theta_{y}, \theta_{d}\right) \qquad \theta_{f} \quad \longleftarrow \quad \theta_{f} - \mu\left(\frac{\partial L_{y}^{i}}{\partial \theta_{f}} - \lambda \frac{\partial L_{d}^{i}}{\partial \theta_{f}}\right) \\ \theta_{y} \quad \longleftarrow \quad \theta_{y} - \mu \frac{\partial L_{y}^{i}}{\partial \theta_{y}}$$

$$\theta_d \quad \longleftarrow \quad \theta_d - \mu \frac{\partial L_d^i}{\partial \theta_d}$$

DANN

\cdot Train DANN in SGD

- · Gradient reversal layer (GRL)
 - Forward propagation: GRL is an identity map

$$R_{\lambda}(x) = x$$

• Backward propagation: take gradient from subsequent level, and \times ($-\lambda$)

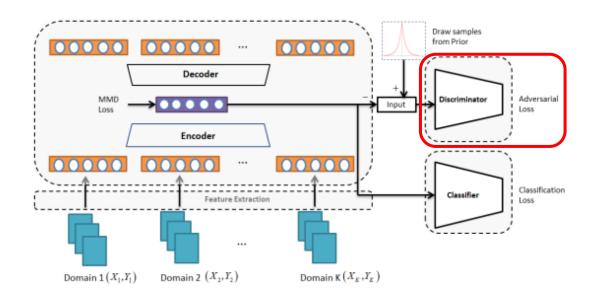
$$\frac{dR_{\lambda}}{dx} = -\lambda^2$$

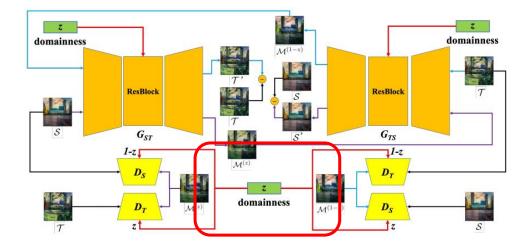
• Transformed objective function:

• GRL can be easily implemented in Pytorch/Tensorflow/Caffe...

$$E\left(\theta_{f},\theta_{y},\theta_{d}\right) = \sum_{\mathbf{x}_{i}\in\mathcal{D}_{s}}L_{y}\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}\right)\right),y_{i}\right) + \lambda\sum_{\mathbf{x}_{i}\in\mathcal{D}_{s}\cup\mathcal{D}_{t}}L_{d}\left(G_{d}\left(G_{f}\left(\mathbf{x}_{i}\right)\right),d_{i}\right)$$

Domain-adversarial learning for DG





DLOW

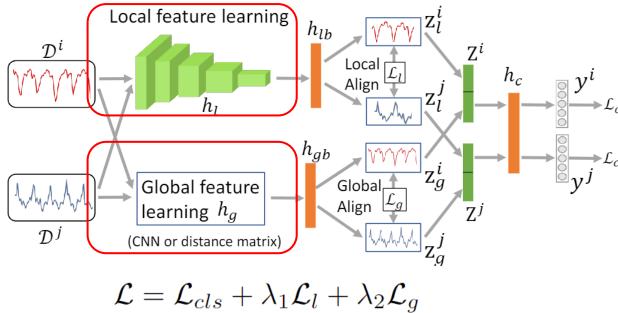
 $\mathcal{L}_{adv}(G_{ST}, D_S) = \mathbb{E}_{\mathbf{x}^s \sim P_S} \left[\log(D_S(\mathbf{x}^s)) \right] \\ + \mathbb{E}_{\mathbf{x}^s \sim P_S} \left[\log(1 - D_S(G_{ST}(\mathbf{x}^s, z))) \right] \\ \mathcal{L}_{adv}(G_{ST}, D_T) = \mathbb{E}_{\mathbf{x}^t \sim P_T} \left[\log(D_T(\mathbf{x}^t)) \right] \\ + \mathbb{E}_{\mathbf{x}^s \sim P_S} \left[\log(1 - D_T(G_{ST}(\mathbf{x}^s, z))) \right].$

- Haoliang Li et al. Domain Generalization with Adversarial Feature Learning. CVPR 2018.
- Rui Gong et al. DLOW: Domain Flow for Adaptation and Generalization. CVPR 2019.

 $\mathsf{MMD}-\mathsf{AAE}$ $\min_{Q,P} \max_{D} \mathcal{L}_{ae} + \lambda_1 \mathcal{R}_{mmd} + \lambda_2 \mathcal{J}_{gan}$

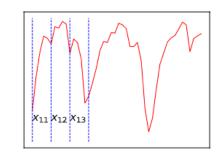
Domain-adversarial learning for DG

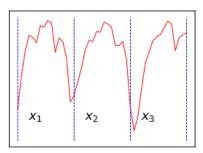
- \cdot Is local alignment enough for DG?
 - No. Ignore some big picture features.
 - \cdot We also need a global alignment.
 - LAG: Local and Global Alignment.



Lu et al. Local and global alignments for generalizable sensor-based human activity recognition. ICASSP 2022.

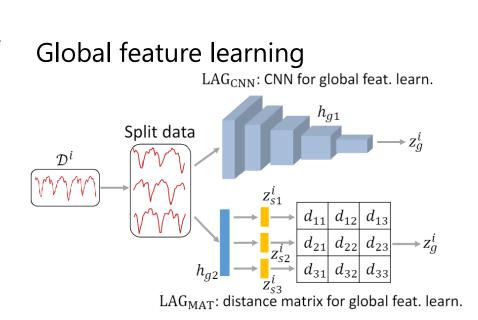
Data of walking activity





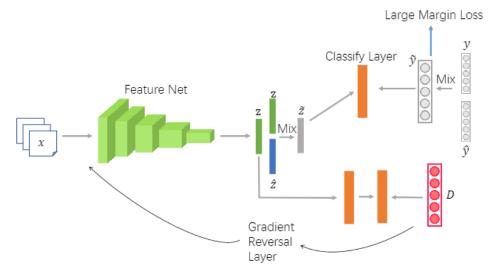
(a) Local correlation

(b) Global correlation



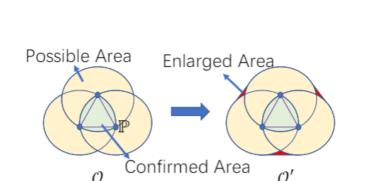
Representation augmentation for DG

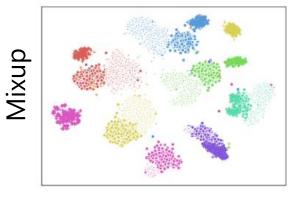
- · Is vanilla Mixup or simple alignment enough?
 - No. Domain-invariant feature Mixup.
 - FIXED: Domain-invariant Feature MIXup with Enhanced Discrimination.

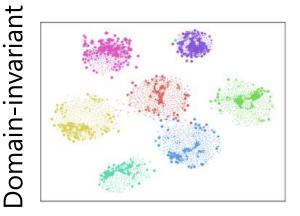




Lu et al. FIXED: Frustratingly Easy Domain Generalization with Mixup. Under Review, 2022.

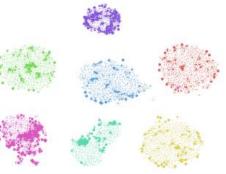






Enlarged distribution cover range

Ours



Invariant risk minimization

\cdot IRM

- Do not seek to match the representation distribution of all domains, but to enforce the optimal *classifier* on top of the representation space to be the same across all domains
- The intuition is that the ideal representation for prediction is the cause of y, and the causal mechanism should not be affected by other factors/mechanisms, thus is domain-invariant.

$$\min_{g \in \mathcal{G}, \atop f \in \bigcap_{i=1}^{M} \arg\min_{f' \in \mathcal{F}} \epsilon^{i}(f' \circ g)} \sum_{i=1}^{M} \epsilon^{i}(f \circ g) \qquad \underbrace{\text{Learn } g}_{g \in \mathcal{G}} \min_{g \in \mathcal{G}} \sum_{i=1}^{M} \epsilon^{i}(g) + \lambda \left\| \nabla_{f} \epsilon^{i}(f \circ g) \right\|_{f=1} \right\|^{2}$$

Feature disentanglement

- What is disentanglement
 - Learn a function that maps a sample to a feature vector, which contains all the information about **different factors of variation** and each dimension (or a subset of dimensions) contains information about only some factor(s).
- Formulation

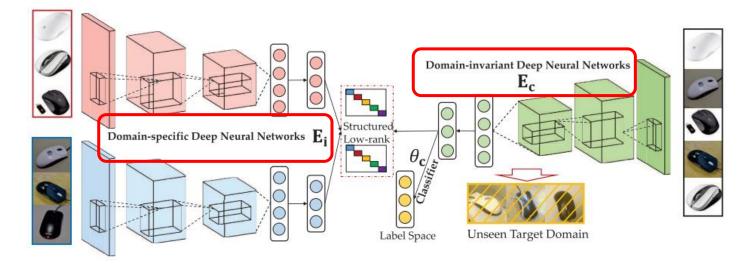
- Feature disentanglement { Multi-component analysisGenerative modeling

Multi-component analysis

- \cdot UndoBias
 - \cdot Weights can be disentangled into: common and specific weights

$$\mathbf{w}_i = \mathbf{w}_0 + \Delta_i$$

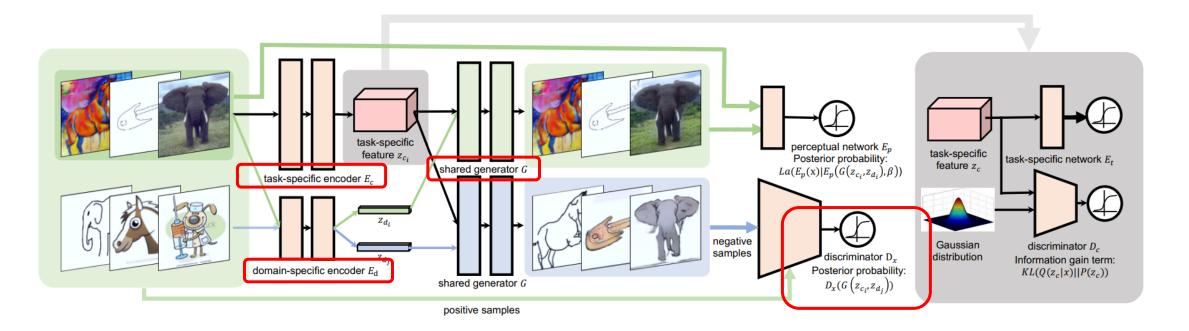
• Structure low-rank DG



- Khosla A, Zhou T, Malisiewicz T, et al. Undoing the damage of dataset bias. ECCV 2012.
- Ding Z, Fu Y. Deep domain generalization with structured low-rank constraint. IEEE TIP 2017.

Feature disentanglement

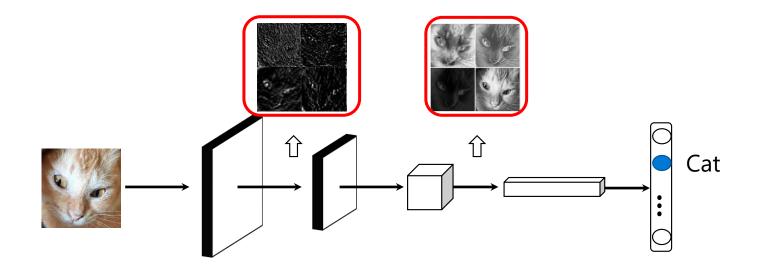
Invariant feature learning + style transfer



Yufei Wang, et al., Variational Disentanglement for Domain Generalization, Arxiv 2021

Multi-layer Feature Learning

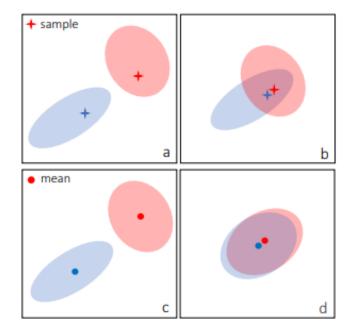
- · Deep features eventually transit from general to specific along the network.
- Shallow Layer extracts shareable information while deep layer extracts category specific information (with regularization).

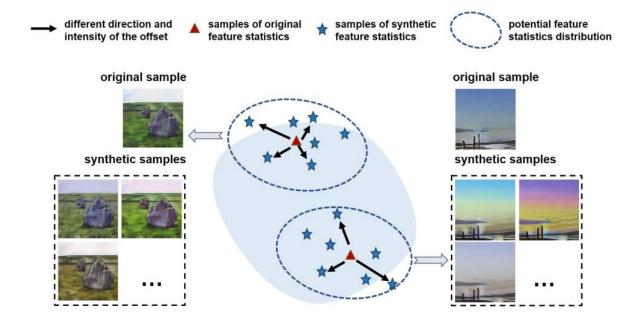


• Haoliang Li, et.al., "GMFAD: Towards Generalized Visual Recognition via Multi-Layer Feature Alignment and Disentanglement", T-PAMI 2020

Domain-Invariant Learning with Uncertainty

• Uncertainty should be considered during domain-invariant learning.





Bayesian Neural Network

Uncertainty modeling through re-parameterization trick

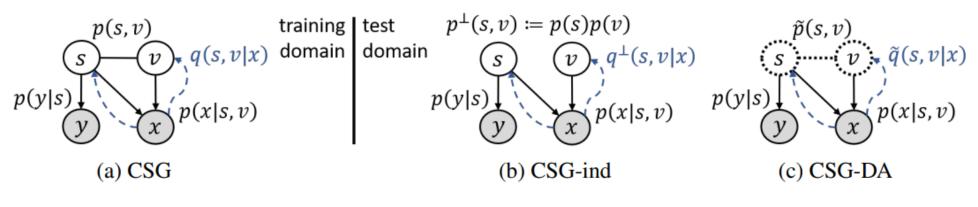
- Zehan Xiao, et al., A Bit More Bayesian: Domain-Invariant Learning with Uncertainty, ICML'21
- Xiaotong Li, et al., Uncertainty Modeling for Out-of-Distribution Generalization." ICLR'22.

Generative modeling

· DIVA: domain-invariant variational-autoencoder, Domain-input-label

 $\mathcal{L}_{s}(d, \mathbf{x}, y) = \mathbb{E}_{q_{\phi_{d}}(\mathbf{z}_{d}|\mathbf{x})q_{\phi_{x}}(\mathbf{z}_{x}|\mathbf{x}), q_{\phi_{y}}(\mathbf{z}_{y}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}[\mathbf{z}_{d}, \mathbf{z}_{x}, \mathbf{z}_{y}]) - \beta KL \left(q_{\phi_{d}}(\mathbf{z}_{d}|\mathbf{x})||p_{\theta_{d}}(\mathbf{z}_{d}|d)\right) - \beta KL \left(q_{\phi_{y}}(\mathbf{z}_{y}|\mathbf{x})||p_{\theta_{y}}(\mathbf{z}_{y}|\mathbf{x})||p_{\theta_{y}}(\mathbf{z}_{y}|y)\right).$

· CSG: Causal semantic generative model



S: semantic factor V: variation factor

$$\mathbb{E}_{p^*(x)}\mathbb{E}_{p^*(y|x)}\left[\log q(y|x)\right] + \mathbb{E}_{p^*(x)}\mathbb{E}_{q(s,v,y|x)}\left[\frac{p^*(y|x)}{q(y|x)}\log\frac{p(s,v,x,y)}{q(s,v,y|x)}\right]$$

- Liu et al, Learning Causal Semantic Representation for Out-of-Distribution Prediction. NeurIPS 2021.
- Ilse M, Tomczak J M, Louizos C, et al. Diva: Domain invariant variational autoencoders[C]//Medical Imaging with Deep Learning. PMLR, 2020: 322-348.

Summary of representation learning

· Advantages

- $\cdot\,$ General and popular
- Better performance
- Some theoretical guarantee
- · Potential disadvantages
 - $\cdot \,$ Still difficult to remove spurious features
 - \cdot Data-driven

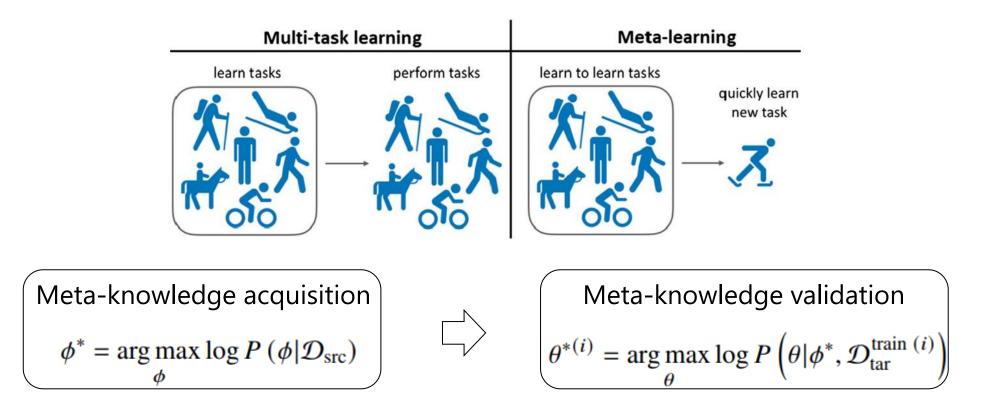
Learning strategy for DG

Different learning strategy for DG

- · Meta-learning
 - · Divide domains into several tasks, then use meta-learning to learn general knowledge
- \cdot Ensemble learning
 - Design ensemble models
- \cdot Gradient operation
 - $\cdot\,$ Alter the gradient interaction between domains
- \cdot Distributionally robust optimization
 - $\cdot\,$ Acquire models that are better for worst-case distribution scenario
- · Self-supervised learning
- \cdot Others

Meta-learning

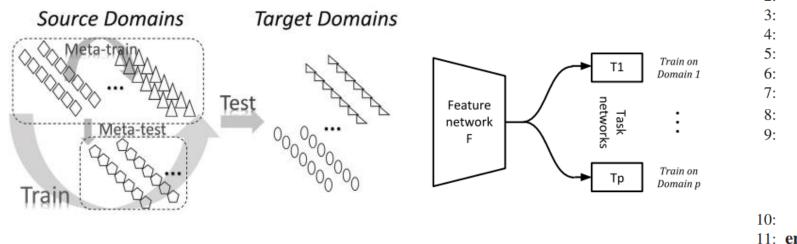
- · Learning to learn, or meta-learn the general knowledge
 - \cdot Instead of the original tasks, meta-learning wants to acquire knowledge about **new tasks**

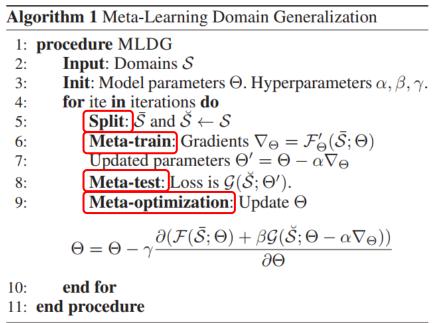


Huisman M, Van Rijn J N, Plaat A. A survey of deep meta-learning[J]. Artificial Intelligence Review, 2021, 54(6): 4483-4541.

Meta-learning for DG

- How to adopt meta-learning for DG?
 - \cdot Key: Old tasks to new tasks in meta-learning \rightarrow Old domains to new domains
- \cdot MLDG: Meta-learning for DG
- MetaReg: meta-learning for regularization

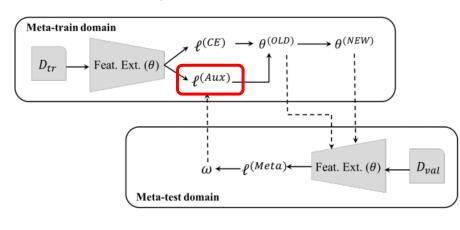




- Li D, Yang Y, Song Y Z, et al. Learning to generalize: Meta-learning for domain generalization. AAAI 2018.
- Balaji Y, Sankaranarayanan S, Chellappa R. Metareg: Towards domain generalization using meta-regularization. NeurIPS 2018.

Meta-learning for DG

- Feature-critic training
 - Learning the regularization terms using meta-learning

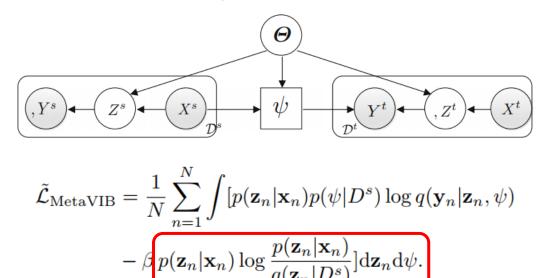


$$\min_{\theta,\phi_j s} \sum_{D_j \in \mathcal{D}_{trn}} \sum_{d_j \in D_j} \ell^{(CE)}(g_{\phi_j}(f_{\theta}(x^{(j)})), y^{(j)}) + \ell^{(Aux)}$$

$$\max_{\omega} \sum_{D_j \in \mathcal{D}_{\text{val}}} \sum_{d_j \in D_j} \tanh(\gamma(\theta^{(\text{NEW})}, \phi_j, x^{(j)}, y^{(j)}) -\gamma(\theta^{(\text{OLD})}, \phi_j, x^{(j)}, y^{(j)}))$$

· Meta-VIB

 Meta variational information bottleneck to model uncertainty between domain shifts

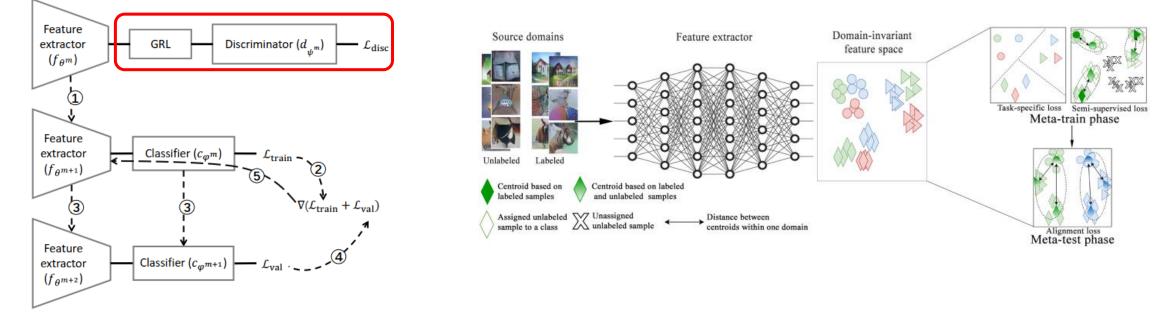


Li Y, Yang Y, Zhou W, et al. Feature-critic networks for heterogeneous domain generalization. ICML 2019.

Du Y, Xu J, Xiong H, et al. Learning to learn with variational information bottleneck for domain generalization. ECCV 2020.

Meta-learning for DG

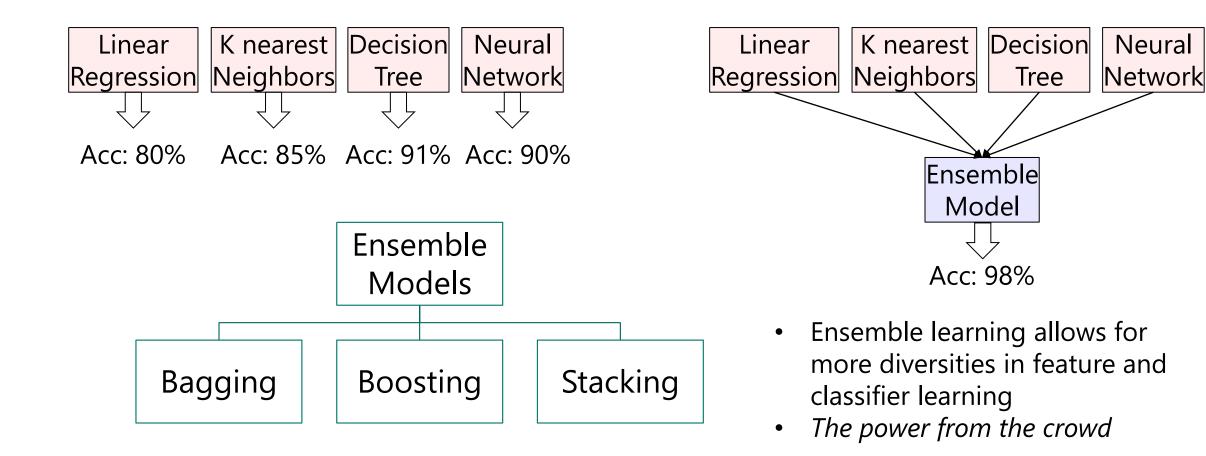
- · DADG: MLDG with adversarial training
- DGSML: MLDG with semi-supervised learning



- Chen K, Zhuang D, Chang J M. Discriminative adversarial domain generalization with meta-learning based cross-domain validation. Neurocomputing 2022.
- Sharifi-Noghabi H, Asghari H, Mehrasa N, et al. Domain generalization via semi-supervised meta learning[J]. arXiv preprint arXiv:2009.12658, 2020.

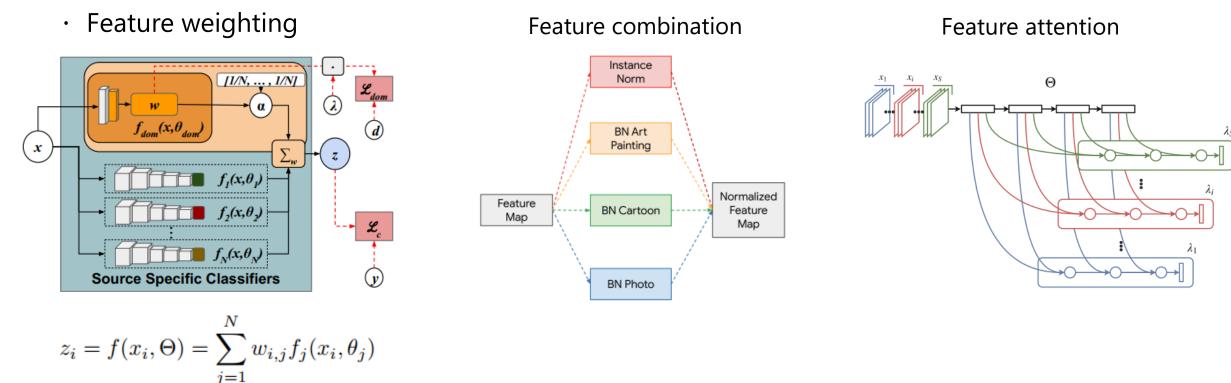
Ensemble learning

• Is a single model or representation enough for generalization?



Ensemble learning for DG

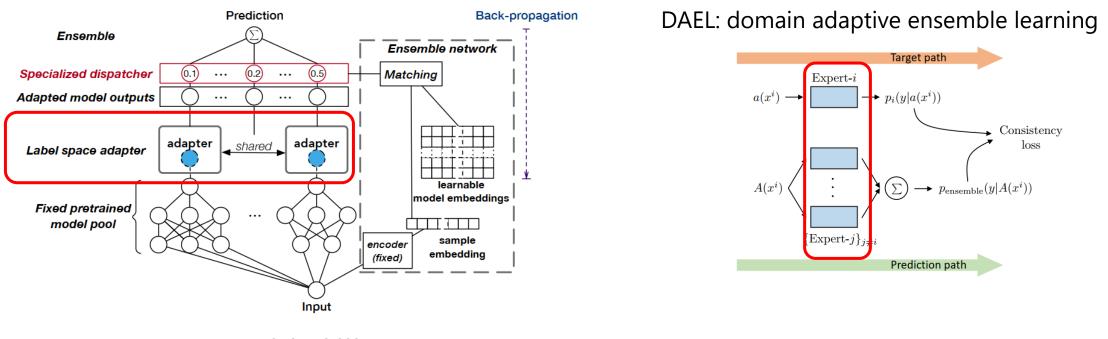
Ensemble-learned DG representations



- Mancini M, Bulo S R, Caputo B, et al. Best sources forward: domain generalization through source-specific nets. ICIP 2018.
- Segu M, Tonioni A, Tombari F. Batch normalization embeddings for deep domain generalization[J]. arXiv preprint arXiv:2011.12672, 2020.
- D'Innocente A, Caputo B. Domain generalization with domain-specific aggregation modules[C]//German Conference on Pattern Recognition. Springer, Cham, 2018: 187-198.

Ensemble learning for DG

- Ensemble learning for classifier learning
 - SEDGE: ensemble of pre-trained models for classifier learning

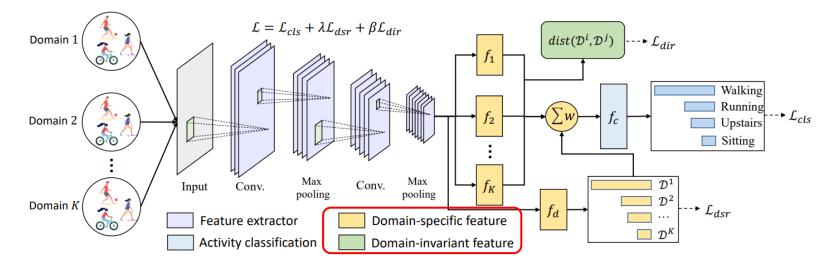


$$w_k = \frac{e^{(\zeta(\mathbf{W}(\mathbf{s})))_k}}{\sum_{j=1}^{K} e^{(\zeta(\mathbf{W}(\mathbf{s})))_j}}$$

Li Z, Ren K, Jiang X, et al. Domain Generalization using Pretrained Models without Fine-tuning[J]. arXiv preprint arXiv:2203.04600, 2022. Zhou K, Yang Y, Qiao Y, et al. Domain adaptive ensemble learning[J]. IEEE TIP 2021.

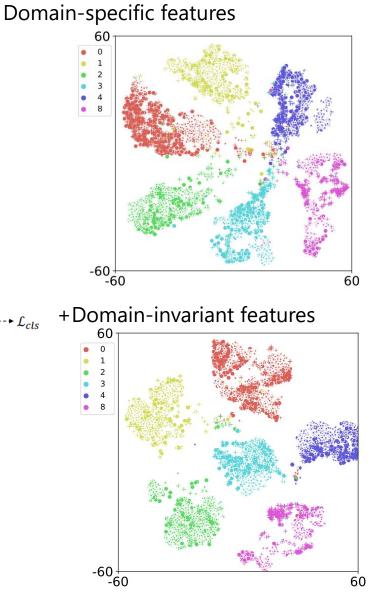
Ensemble learning for DG

- \cdot Is ensemble learning enough for DG?
 - \cdot No. Ensemble \rightarrow domain-specific knowledge
 - \cdot We also need a balance with domain-invariant knowledge
 - · AFFAR: Adaptive Feature Fusion



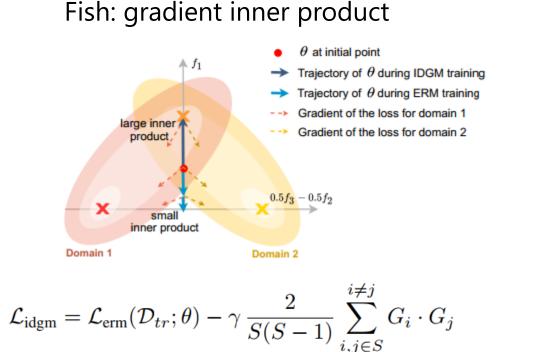
$\mathcal{L} = \mathcal{L}_{cls} + \lambda \mathcal{L}_{dsr} + \beta \mathcal{L}_{dir}$

Qin et al. Domain generalization for activity recognition via adaptive feature fusion. ACM TIST 2022.

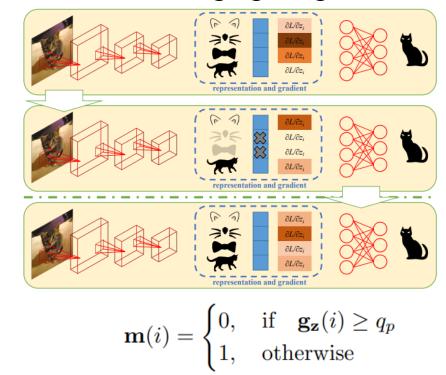


Gradient operation for DG

Model the interactions between cross-domain gradients



RSC: self-challenging for gradient



• Shi Y, Seely J, Torr P H S, et al. Gradient matching for domain generalization. ICLR 2022.

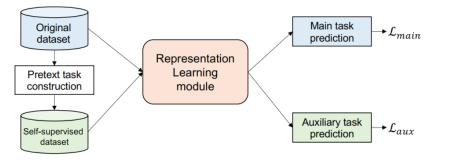
GIP, denote as \widehat{G}

• Huang Z, Wang H, Xing E P, et al. Self-challenging improves cross-domain generalization. ECCV 2020.

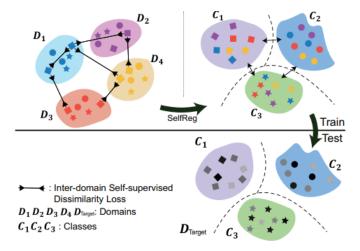
Self-supervised learning for DG

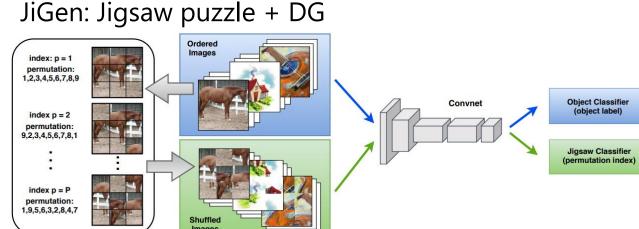
· Construct pretext tasks for general representation learning

Self-supervised learning



Selfreg: self-supervised contrastive loss

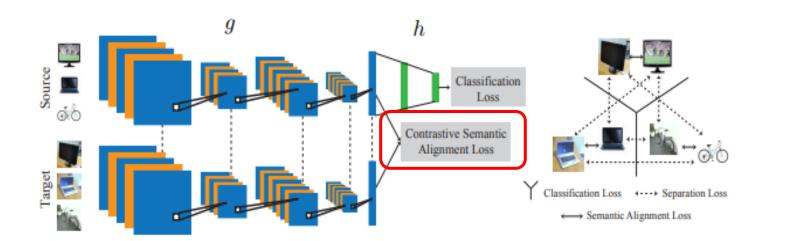


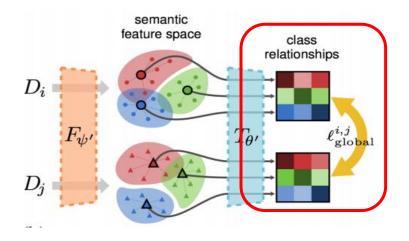


- Carlucci F M, D'Innocente A, Bucci S, et al. Domain generalization by solving jigsaw puzzles. CVPR 2019.
- Kim D, Yoo Y, Park S, et al. Selfreg: Selfsupervised contrastive regularization for domain generalization. ICCV 2021.

Contrastive Learning

Minimizing/Maximizing feature distance among samples from with same/different category information from different domains

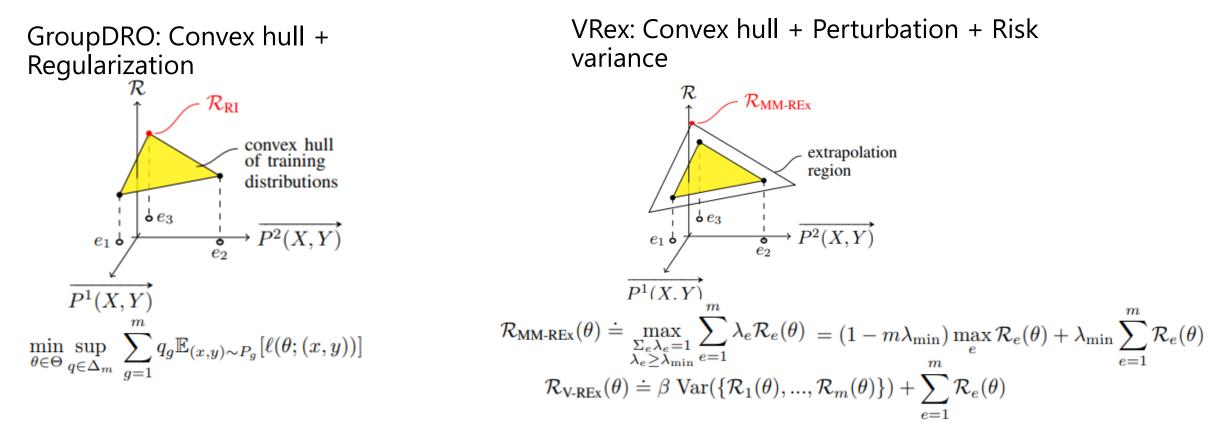




- Motiian, et al., Unified Deep Supervised Domain Adaptation and Generalization, ICCV'17
- Dou, et al., Domain Generalization via Model-Agnostic Learning of Semantic Features, NeurIPS'19

Distributionally robust optimization for DG

· Learn a model at worst-case distribution scenario

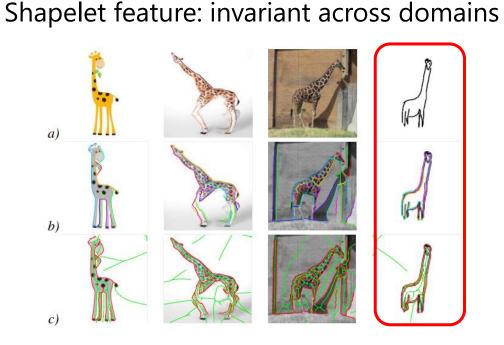


• S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, "Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization," in ICLR, 2020.

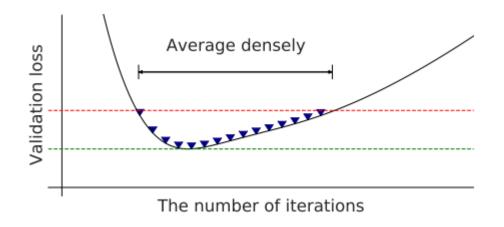
• D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. Le Priol, and A. Courville, "Out-of-distribution generalization via risk extrapolation (rex)," in ICML, 2021, pp. 5815–5826.

Other learning strategy

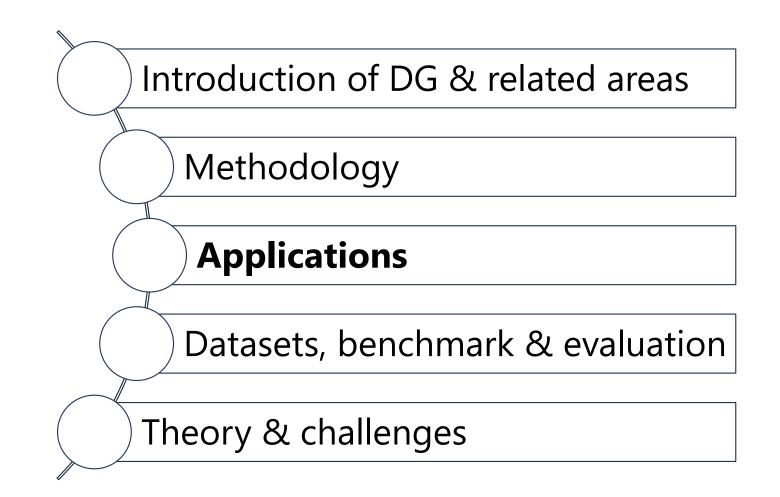
 \cdot Other interesting learning strategy for DG



SWAD: Smooth training loss



- Narayanan M, Rajendran V, Kimia B. Shape-biased domain generalization via shock graph embeddings. ICCV 2021.
- Cha J, Chun S, Lee K, et al. Swad: Domain generalization by seeking flat minima. NeurIPS 2021.



Applications for DG

 \cdot Wide applications across CV, NLP, RL, and others

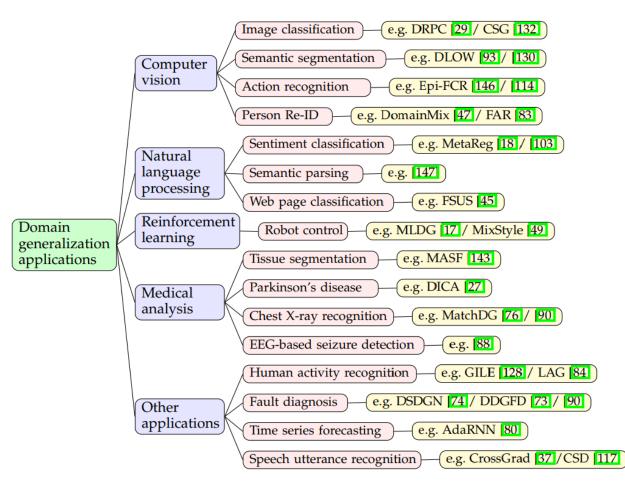


Figure credit: DG survey by Wang et al. (TKDE'22)

Wide applications of DG

 \cdot Computer vision

Image classification

Training set

Test set

Action recognition

Semantic segmentation

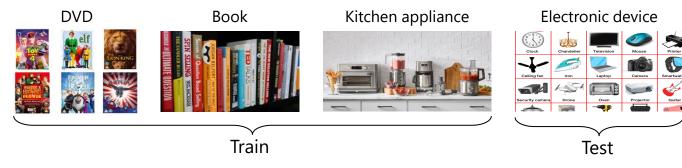
Person ReID

Monet

Ukiyo-e

Style transfer

Natural language processing
 Sentiment classification



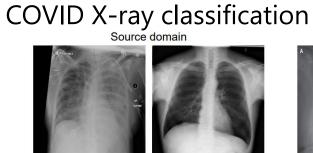
Semantic parsing

	database: concert singer	Train
?	Show all <i>countries</i> and the number of <i>singers</i> in each <i>count</i>	try.
sal.	SELECT Country , count(*) FROM Singer GROUP BY Court	ntry
	database: farm	Test
?	Please show the different <i>statuses</i> of <i>cities</i> and the average <i>population</i> of cities with each <i>status</i> .	•
۶al	SELECT Status, avg(Population) FROM City GROUP BY S	tatus

· Reinforcement learning

Sim-to-real Robot control

 \cdot Medical applications



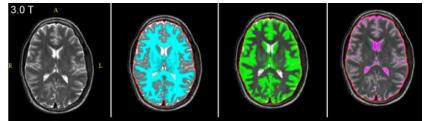
Pneumonia

Normal

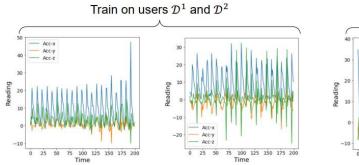
COVID-19

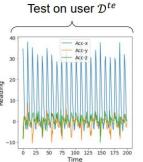
Normal

Tissue segmentation



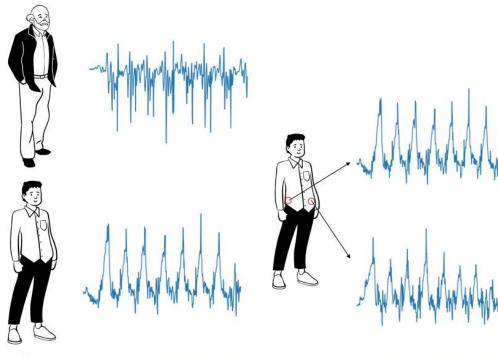
Parkinson's disease diagnosis

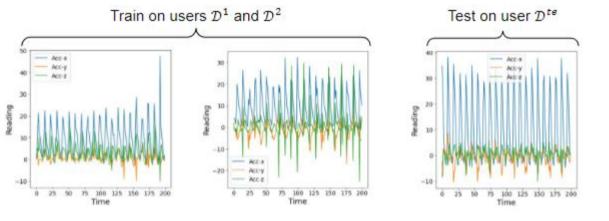




Sensor-based human activity recognition

- · Create a model that learns generalizable representations for different age groups
- · Different people/device locations/activity patterns generate different sensor readings



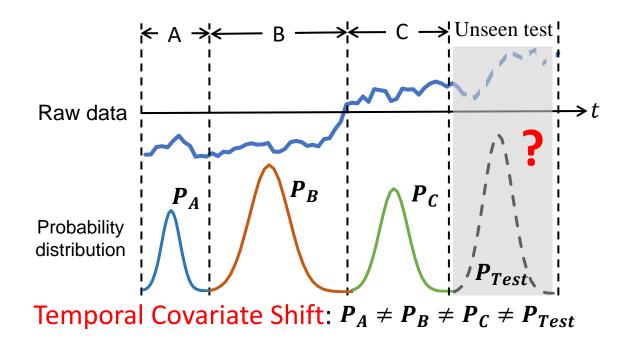


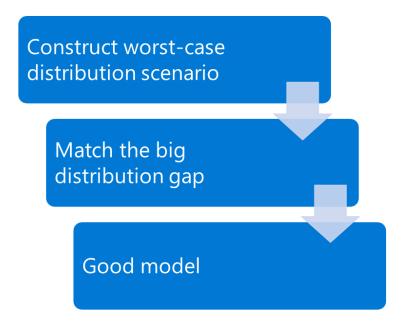
- Lu et al. Local and global alignments for generalizable sensor-based human activity recognition. ICASSP 2022.
- Lu et al. Semantic-discriminative mixup for Generalizable Sensor-based Cross-domain Activity Recognition. ACM IMWUT 2022.

(a) Different sensor readings on different subjects.

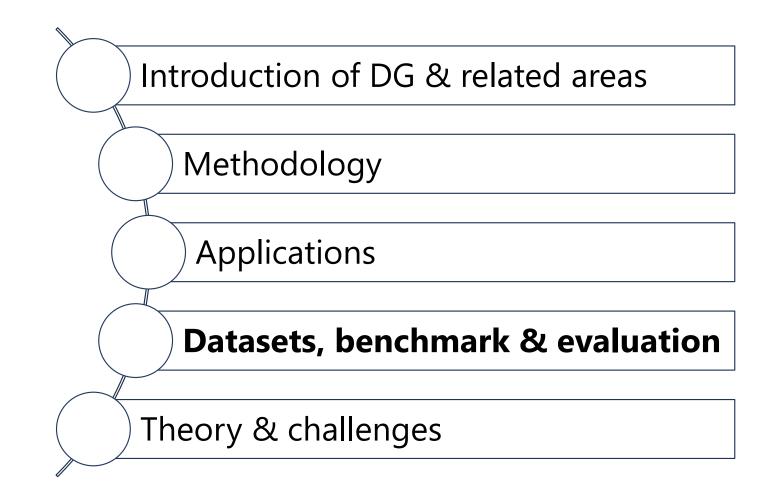
(b) Different sensor readings on different positions.

- \cdot Time series forecasting
 - $\cdot\,$ AdaRNN: adaptive forecasting of time series using DG



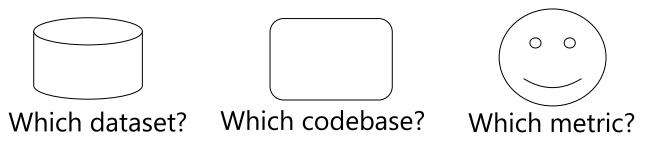


Du et al. AdaRNN: adaptive learning and forecasting of time series. CIKM 2021.



Benchmarks for DG

• Important consideration for DG benchmarks:



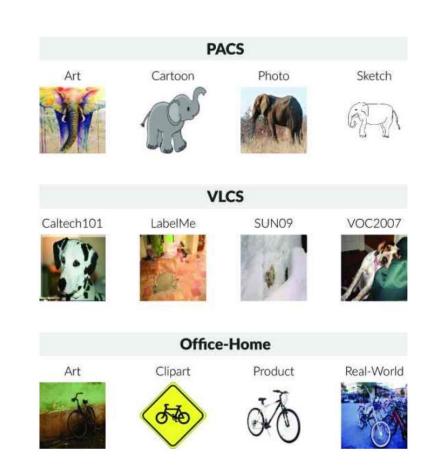
- · Popular datasets
- Common benchmarks and codebases
- · Evaluation strategy: model selection

Note:

- Technically, *any* application settings that fits in DG scenario can be considered as a good test bed.
- There exists **no** "golden-standard" for benchmarking and evaluation.

Datasets for DG

Common benchmarks
 Camelyon17



(Camelyon!/		V	/ I L 赵	2	FMoV	V		
		Train		Val (OOD)	Test (OOD)				
	d = Hospital 1	d = Hospital 2	d = Hospital 3	d = Hospital 4	d = Hospital 5	Satellite Image (x)		Train	
	y = Tumor					Building / Year / Land Type Region (y) (d)	2002 / Americas shopping mall	2009 / Africa multi-unit residential	

Dataset #	#Domain	#Class	#Sample	Description
Office-Caltech	4	10	2,533	Caltech, Amazon, Webcam, DSLR
Office-31	3	31	4,110	Amazon, Webcam, DSLR
PACS	4	7	9,991	Art, Cartoon, Photos, Sketches
VLCS	4	5	10,729	Caltech101, LabelMe, SUN09, VOC2007
Office-Home	4	65	15,588	Art, Clipart, Product, Real
Terra Incognita	4	10	24,788	Wild animal images taken at locations L100, L38, L43, L46
Rotated MNIST	6	10	70,000	Digits rotated from 0° to 90° with an interval of 15°
DomainNet	6	345	586,575	Clipart, Infograph, Painting, Quickdraw, Real, Sketch
iWildCam2020-wilds	323	182	203,029	Species classification across different camera traps
Camelyon17-wilds	5	2	45,000	Tumor identification across five different hospitals
RxRx1-wilds	51	1,139	84,898	Genetic perturbation classification across experimental batches
OGB-MolPCBA	120,084	128	400,000	Molecular property prediction across different scaffolds
GlobalWheat-wilds	47	bounding boxes	6,515	Wheat head detection across regions of the world
CivilComments-wilds	-	2	450,000	Toxicity classification across demographic identities
FMoW-wilds	80	62	118,886	Land use classification across different regions and years
PovertyMap-wilds	46	real value	19,669	Poverty mapping across different countries
Amazon-wilds	3920	5	539,502	Sentiment classification across different users
Py150-wilds	8,421	next token	150,000	Code completion across different codebases

Test

2017 /

educational

institution

Africa

2016 /

Americas

recreational

facility

2012 /

Europe

road

bridge

Benchmark and codebase

· DomainBed

· A unified benchmark for domain generalization

Available datasets

	Algorithm	CMNIST	RMNIST	VLCS	PACS	OfficeHome	TerraInc	DomainNet	Average
irrently available datasets are:	ERM	51.5 ± 0.1	98.0 ± 0.0	77.5 ± 0.4	85.5 ± 0.2	66.5 ± 0.3	46.1 ± 1.8	$\begin{array}{c} 40.9 \pm 0.1 \\ 33.9 \pm 2.8 \\ 33.3 \pm 0.2 \\ 39.2 \pm 0.1 \\ 41.2 \pm 0.1 \\ 41.5 \pm 0.1 \\ 23.4 \pm 9.5 \\ 38.3 \pm 0.1 \\ 38.3 \pm 0.3 \\ 40.6 \pm 0.1 \\ 40.3 \pm 0.1 \\ 35.5 \pm 0.2 \\ 33.6 \pm 2.9 \end{array}$	66.6
statedMNIST (Ghifary et al. 2015)	IRM	52.0 ± 0.1	97.7 ± 0.1	78.5 ± 0.5	83.5 ± 0.8	64.3 ± 2.2	47.6 ± 0.8	++	65.4
ateurinasi (Ginary et al., 2015)	GroupDRO	52.1 ± 0.0	98.0 ± 0.0	76.7 ± 0.6	84.4 ± 0.8	66.0 ± 0.7	43.2 ± 1.1	33.3 ± 0.2	64.8
predMNIST (Arjovsky et al., 2019)	Mixup	52.1 ± 0.2	98.0 ± 0.1	77.4 ± 0.6	84.6 ± 0.6	68.1 ± 0.3	47.9 ± 0.8	***	66.7
	MLDG	51.5 ± 0.1	97.9 ± 0.0	77.2 ± 0.4	84.9 ± 1.0	66.8 ± 0.6	47.7 ± 0.9	41.2 ± 0.1	66.7
(Fang et al., 2013)	CORAL	51.5 ± 0.1	98.0 ± 0.1	78.8 ± 0.6	86.2 ± 0.3	68.7 ± 0.3	47.6 ± 1.0	41.5 ± 0.1	67.5
5 (Li et al., 2017)	MMD	51.5 ± 0.2	97.9 ± 0.0	77.5 ± 0.9	84.6 ± 0.5	66.3 ± 0.1	42.2 ± 1.6	23.4 ± 9.5	63.3
(Lictui, 2017)	DANN	51.5 ± 0.3	97.8 ± 0.1	78.6 ± 0.4	83.6 ± 0.4	65.9 ± 0.6	46.7 ± 0.5	38.3 ± 0.1	66.1
Home (Venkateswara et al., 2017)	CDANN	51.7 ± 0.1	97.9 ± 0.1	77.5 ± 0.1	82.6 ± 0.9	65.8 ± 1.3	45.8 ± 1.6	38.3 ± 0.3	65.6
ncognita (Roon, et al. 2019) subset	MTL	51.4 ± 0.1	97.9 ± 0.0	77.2 ± 0.4	84.6 ± 0.5	66.4 ± 0.5	45.6 ± 1.2	40.6 ± 0.1	66.2
ncognita (beery et al., 2016) subset	SagNet	51.7 ± 0.0	98.0 ± 0.0	$\begin{array}{ccccccccc} 0 & 77.5 \pm 0.4 & 85\\ 1 & 78.5 \pm 0.5 & 83\\ 0 & 76.7 \pm 0.6 & 84\\ 1 & 77.4 \pm 0.6 & 84\\ 0 & 77.2 \pm 0.4 & 84\\ 1 & 78.8 \pm 0.6 & 86\\ 0 & 77.5 \pm 0.9 & 84\\ 1 & 78.6 \pm 0.4 & 83\\ 1 & 77.5 \pm 0.1 & 82\\ 0 & 77.2 \pm 0.4 & 84\\ 0 & 77.8 \pm 0.5 & 86\\ 1 & 77.6 \pm 0.3 & 85\\ 1 & 78.3 \pm 0.2 & 84\\ 1 & 77.1 \pm 0.5 & 85\\ \end{array}$	86.3 ± 0.2	68.1 ± 0.1	48.6 ± 1.0	40.3 ± 0.1	67.2
nNet (Peng et al., 2019)	ARM	56.2 ± 0.2	98.2 ± 0.1	77.6 ± 0.3	85.1 ± 0.4	64.8 ± 0.3	45.5 ± 0.3	35.5 ± 0.2	66.1
	VREx	51.8 ± 0.1	97.9 ± 0.1	78.3 ± 0.2	84.9 ± 0.6	66.4 ± 0.6	46.4 ± 0.6	33.6 ± 2.9	65.6
(Dias Da Cruz et al., 2020) subset	RSC	51.7 ± 0.2	97.6 ± 0.1	77.1 ± 0.5	85.2 ± 0.9	65.5 ± 0.9	46.6 ± 1.0	38.9 ± 0.5	66.1
ng et al., 2013) et al., 2017) ome (Venkateswara et al., 2017) ncognita (Beery et al., 2018) subset	Model selection: training-domain validation set								

• WILDS (Koh et al., 2020) Camelyon17 (Bandi et al., 2019) about tumor detection in tissues

Interesting results: DomainBed found that there **are not** significant improvements for recent DG algorithms. *Is it the case?*

Benchmark and codebase

· DeepDG

• Built by borrowing the knowledge from DomainBed, but faster, and easier to use

Implemented Algorithms

We currently support the following algoirthms. We are working on r

1. ERM

- 2. DDC (Deep Domain Confusion, arXiv 2014) [1]
- 3. CORAL (COrrelation Alignment, ECCV-16) [2]
- 4. DANN (Domain-adversarial Neural Network, JMLR-16) [3]
- 5. MLDG (Meta-learning Domain Generalization, AAAI-18) [4]

6. Mixup (ICLR-18) [5]

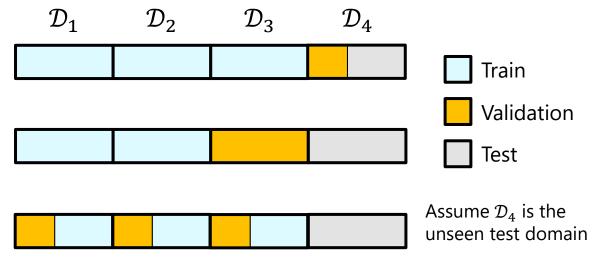
- 7. RSC (Representation Self-Challenging, ECCV-20) [6]
- 8. GroupDRO (ICLR-20) [7]
- 9. ANDMask (ICLR-21) [8]
- 10. VREx (ICML-21) [9]

- Avoids huge hyperparameter tuning
- More friendly interface
- Better customization

Model selection

\cdot Model selection in DomainBed

- · Test-domain validation set (oracle)
 - $\cdot \,$ Use part of test domain as the validation
- · Leave-one-domain-out cross-validation
 - $\cdot \,$ One domain as testing domain for validation
- Training-domain validation set (*popular*)
 - $\cdot\,$ Leave some part of the training data as the validation set



- Q: is it reasonable to use training-domain validation for model selection?
- A: **no**. Since the validation distribution cannot represent the test distribution.

Discussion about the performance of DG

- Performance should be restricted to certain applications
 - Cross-dataset human activity recognition^[1]

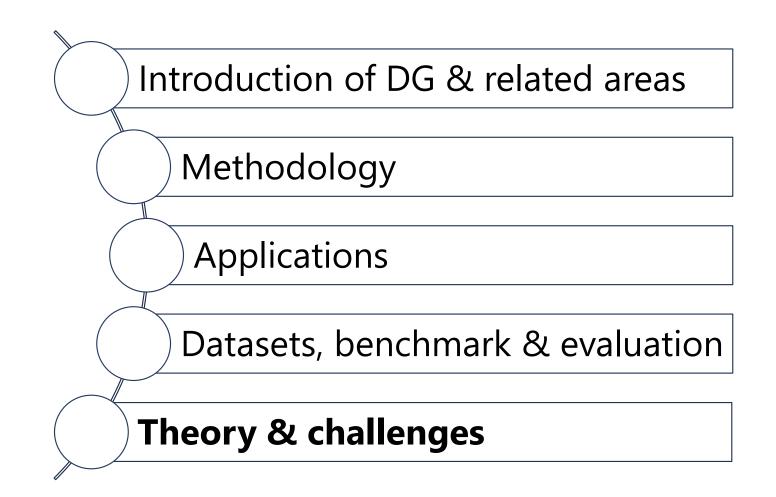
Source	Target	DeepALL	DANN	CORAL	ANDMask	GroupDRO	RSC	Mixup	SDMix
1,2,3,4	0	41.52	45.45	33.22	47.51	27.12	46.56	48.77	47.50
0,2,3,4	1	26.73	25.36	25.18	31.06	26.66	27.37	34.19	36.10
0,1,3,4	2	35.81	38.06	25.81	39.17	24.34	35.93	37.49	42.53
0,1,2,4	3	21.45	28.89	22.32	30.22	18.39	27.04	29.50	34.52
0,1,2,3	4	27.28	25.05	20.64	29.90	24.82	29.82	29.95	30.93
AVG	-	30.56	32.56	25.43	35.57	24.27	33.34	35.98	38.32

· Cross-dataset object detection^[2]

		Cityscapes→Foggy Cityscapes								
Setting	Method	person	rider	car	truck	bus	train	mcycle	bicycle	mAP
	Faster R-CNN [52]	17.8	23.6	27.1	11.9	23.8	9.1	14.4	22.8	18.8
DG	SNR-Faster R-CNN	20.3	24.6	33.6	15.9	26.3	14.4	16.8	26.8	22.3
	DA Faster R-CNN [72]	25.0	31.0	40.5	22.1	35.3	20.2	20.0	27.1	27.6
UDA	SNR-DA Faster R-CNN	27.3	34.6	44.6	23.9	38.1	25.4	21.3	29.7	30.6

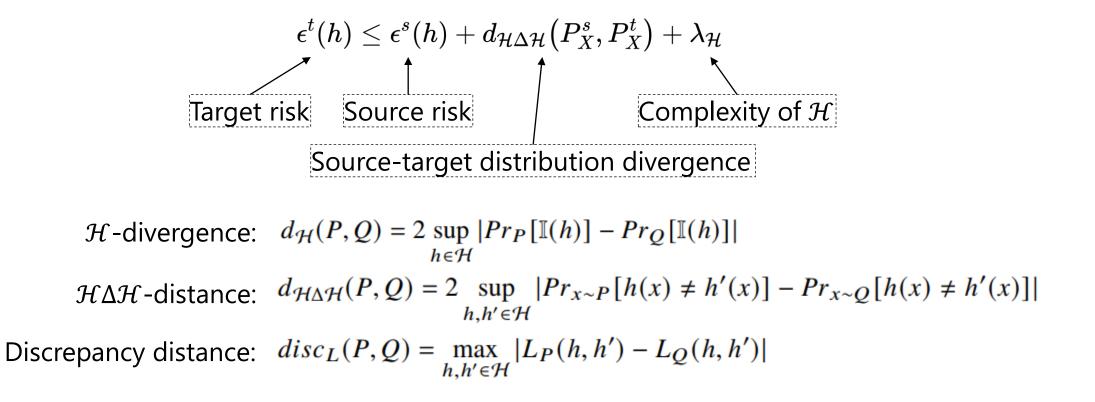
Hint: maybe we should develop application-oriented evaluation benchmarks?

[1] Lu et al. Semantic-discriminative mixup for generalizable cross-domain sensor-based human activity recognition. ACM IMWUT 2022.
 [2] Jin X, Lan C, Zeng W, et al. Style normalization and restitution for domain generalization and adaptation. IEEE TMM 2021.



Theory

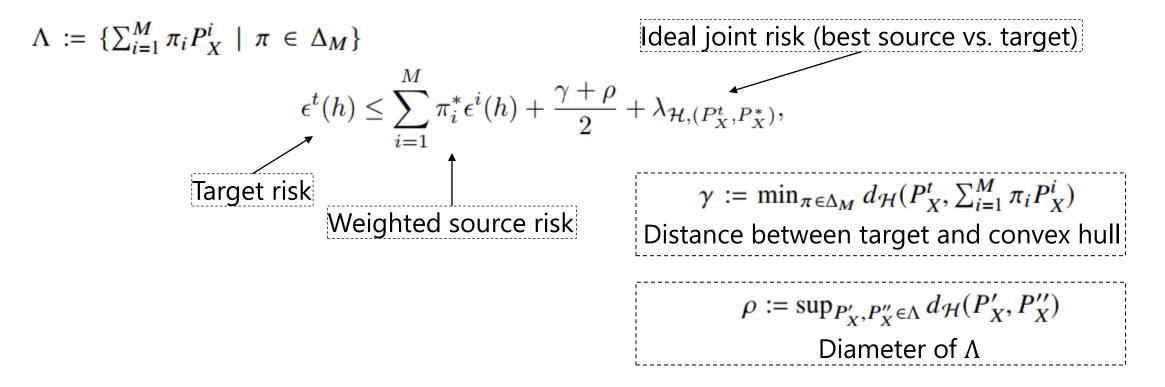
- · Domain adaptation error bound
 - The error on target domain is bounded by:



- Ben-David S, Blitzer J, Crammer K, et al. Analysis of representations for domain adaptation. NIPS 2016.
- Ben-David S, Blitzer J, Crammer K, et al. A theory of learning from different domains[J]. Machine learning, 2010, 79(1): 151-175.
- Mansour Y, Mohri M, Rostamizadeh A. Domain adaptation with multiple sources. NIPS 2009.

Theory for DG

- Assumption 1: convex hull
 - \cdot Key: approximate target domain using the <u>convex hull</u> of source distributions



Theory for DG

- Assumption 2: classifier variation
 - \cdot Key: the gap between available environments and all invariants

$$\operatorname{err}(f) = \mathcal{L}(\mathcal{E}_{all}, f) - \mathcal{L}(\mathcal{E}_{avail}, f)$$

Theorem 4.1 (Main Theorem). Suppose we have learned a classifier f(x) = g(h(x)) such that $\forall e \in \mathcal{E}_{all}$ and $\forall y \in \mathcal{Y}$, $p_{h^e|Y^e}(h|y) \in L^2(\mathbb{R}^d)$. Denote the characteristic function of random variable $h^e|Y^e$ as $\hat{p}_{h^e|Y^e}(t|y) = \mathbb{E}[\exp\{i\langle t, h^e\rangle\}|Y^e = y]$. Assume the hypothetical space \mathcal{F} satisfies the following regularity conditions that $\exists \alpha, M_1, M_2 > 0, \forall f \in \mathcal{F}, \forall e \in \mathcal{E}_{all}, y \in \mathcal{Y}$,

$$\int_{h\in\mathbb{R}^d} p_{h^e|Y^e}(h|y)|h|^{\alpha} \mathrm{d}h \le M_1 \quad and \quad \int_{t\in\mathbb{R}^d} |\hat{p}_{h^e|Y^e}(t|y)||t|^{\alpha} \mathrm{d}t \le M_2. \tag{4}$$

If $(\mathcal{E}_{avail}, \mathcal{E}_{all})$ is $(s(\cdot), \mathcal{I}^{inf}(h, \mathcal{E}_{avail}))$ -learnable under Φ with Total Variation ρ^3 then we have

$$\operatorname{err}(f) \leq O\left(s\left(\mathcal{V}_{\rho}^{sup}(h, \mathcal{E}_{avail})\right)^{\frac{\alpha^{2}}{(\alpha+d)^{2}}}\right). \tag{5}$$

Here ρ is total variation distance, and $O(\cdot)$ depends on d, C, α, M_1, M_2 .

Ye H, Xie C, Cai T, et al. Towards a theoretical framework of out-of-distribution generalization. NeurIPS 2021.

Theory of DG

Assumption 3: subpopulation shift

Key: Gaussian mixture model to contain all sub-distributions

Theorem 1 (Error comparison with subpopulation shifts) Consider n independent samples generated from model (4), $\pi^{(R)} = \pi^{(1)} = 1/2$, $\pi^{(0,R)} = \pi^{(1,G)} = \alpha < 1/4$, $\max_{y,d} \|\mu^{(y,d)}\|_2 \leq C$, and Σ is positive definite. Suppose (ξ, α) satisfies that $\xi < \min\{\frac{\|\widetilde{\Delta}\|_{\Sigma}}{\|\Delta\|_{\Sigma}}, 1\} - C\alpha$ for some large enough constant C and $\|\widetilde{\Delta}\|_{\Sigma} \leq \sqrt{\frac{2\mathbb{E}[\lambda_i^2]}{\max\{3var(\lambda_i), 1/4\}}}$. Then for any $p_{sel} \in [0, 1]$,

$$\widehat{E}_{\text{LISA}}^{(wst)} < \overbrace{\min\{\widehat{E}_{\text{ERM}}^{(wst)}, \widehat{E}_{\text{mix}}^{(wst)}\}}^{(wst)} + O_P\left(\frac{p\log n}{n} + \frac{p}{\alpha n}\right).$$
Gaussian mixture distribution

Yao H, Wang Y, Li S, et al. Improving Out-of-Distribution Robustness via Selective Augmentation. ICML 2022.

Theory of DG

- \cdot Other theory
 - \cdot Adversarial training and pretrained model is good for $\mathsf{DG}^{[1]}$
 - DG can be bounded under kernel learning conditions^[2]
- \cdot Current progress
 - \cdot The research on DG theory is still on the go

- [1] Yi M, Hou L, Sun J, et al. Improved OOD Generalization via Adversarial Training and Pretraing. ICML 2021.
- [2] Deshmukh A A, Lei Y, Sharma S, et al. A generalization error bound for multi-class domain generalization[J]. arXiv preprint arXiv:1905.10392, 2019.

Challenges

- · Continuous domain generalization
 - · Continuous / online learning
- \cdot Generalize to novel categories
 - $\cdot\,$ New categories instead of closed set
- · Interpretable domain generalization
 - Learning to interpret: why it can generalize?
- \cdot Large-scale pre-training / self-learning and DG
 - $\cdot\,$ The role of pre-training and self-learning with DG
- \cdot Performance evaluation
 - · Develop more fair and application-driven evaluation standards

Conclusion

General ML — Non-IID → Domain adaptation — Unseen target → Domain generalization

Introduction and background

Relation with existing area: transfer learning, domain adaptation, multi-task learning...

(Data manipulation: augmentation, or generation

Algorithm { Representation learning: domain-invariant learning, disentanglement Learning strategy: meta-learning, ensemble learning, gradient, DRO, SSL...

Applications: CV, NLP, RL, medical...

Datasets, benchmark, evaluation

Theory and future challenges

DG Roadmap

Thanks

Contact: jindong.wang@microsoft.com, haoliang.li@cityu.edu.hk

Tutorial website: <u>https://dgresearch.github.io/</u>

DG survey paper: https://arxiv.org/abs/2103.03097

Codebase: https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG