

Generalizing to Unseen Domains: A Survey on Domain Generalization

Jindong Wang¹, Cuiling Lan¹, Chang Liu¹, Yidong Ouyang², Wenjun Zeng¹, Tao Qin¹

¹ Microsoft Research Asia, Beijing, China ² Central University of Finance and Economics, Beijing, China

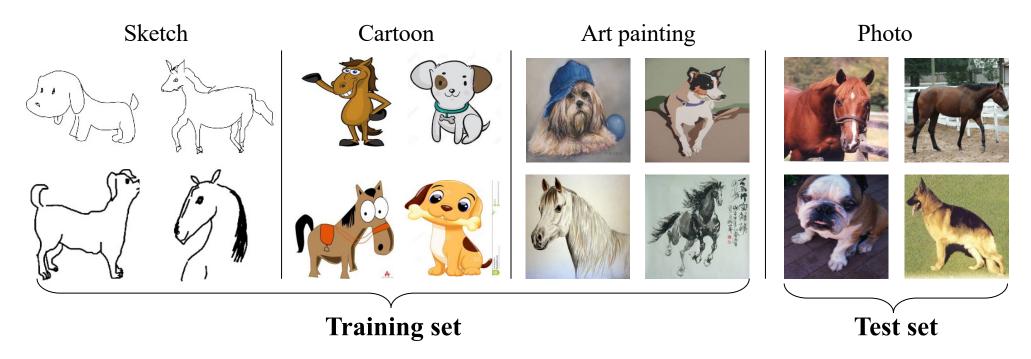
jindong.wang@microsoft.com

https://arxiv.org/abs/2103.03097

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG

Background

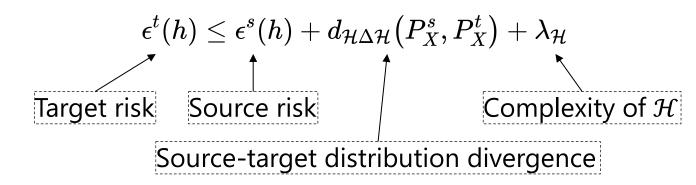
Domain adaptation



- $\cdot P_{Train}(x, y) \neq P_{Test}(x, y)$
- Source: Train, Target: test

Domain adaptation

• Basic theory of DA [Ben-David et al'07]



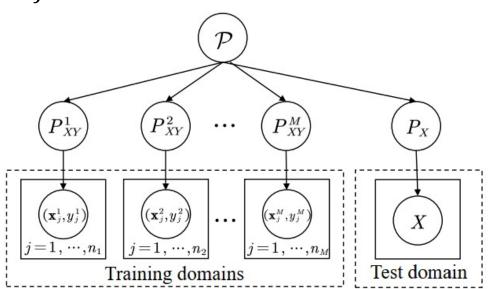
- \cdot To solve DA, we need to:
 - · Reweight instances to select a subset of two domains where their $d(\cdot, \cdot)$ is small
 - Tradaboost [Dai et al'07], KMM [Sugiyama et al'08], Distant TL [Tan et al'17]
 - Learn domain-invariant feature representations to reduce $d(\cdot, \cdot)$
 - TCA [Pan et al'11], DANN [Ganin et al'15], DDC[Tzeng et al'14] and their extensions as of today
- How about <u>testing phase</u>? <u>Model selection</u>?

DA requires direct access to target domain in training!

Domain generalization

- · Definition
 - Given: *M* training domains $S = \{S_i \mid i = 1, \dots, M\}$, where $S_i = \{(x_j^i, y_j^i)\}_{i=1}^{n_i}$
 - · Condition:
 - · Joint distributions are different, i.e., $P_{XY}^i \neq P_{XY}^j$, $1 \le i \ne j \le M$
 - · Test domain **cannot be accessed** in training
 - Goal:
 - $\cdot\,$ Achieve minimum test error on test domain
 - $\cdot \quad (P_{XY}^i \neq P_{XY}^{test})$

 $\min_{h} \mathbb{E}_{(\mathbf{x},y) \in \mathcal{S}_{test}}[\ell(h(\mathbf{x}),y)]$



Related area

Learning paradigm	Training data	Test data	Condition	Test access
Multi-task learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	$\mathcal{Y}^i \neq \mathcal{Y}^j, 1 \leq i \neq j \leq n$	\checkmark
Transfer learning	$\mathcal{S}^{src}, \mathcal{S}^{tar}$	\mathcal{S}^{tar}	$\mathcal{Y}^{src} eq \mathcal{Y}^{tar}$	\checkmark
Domain adaptation	$\mathcal{S}^{src}, \mathcal{S}^{tar}$	\mathcal{S}^{tar}	$\mathcal{X}^{src} \neq \mathcal{X}^{tar}$	\checkmark
Meta-learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^{n+1}	$\mathcal{Y}^i \neq \mathcal{Y}^j, 1 \leq i \neq j \leq n+1$	\checkmark
Lifelong learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	S^i arrives sequentially	\checkmark
Zero-shot learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^{n+1}	$\mathcal{Y}^{n+1} \neq \mathcal{Y}^i, 1 \leq i \leq n$	×
Domain generalization	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^{n+1}	$P(\mathcal{S}^i) \neq P(\mathcal{S}^j), 1 \leq i \neq j \leq n+1$	×

Theory

Domain adaptation error bound

Theorem 1 (Domain adaptation error bound (non-asymptotic) [20] (Thm. 2)). Let d be the Vapnik–Chervonenkis (VC) dimension [22] of \mathcal{H} , and \mathcal{U}^s and \mathcal{U}^t be unlabeled samples of size n from the two domains. Then for any $h \in \mathcal{H}$ and $\delta \in (0,1)$, the following inequality holds with probability at least $1 - \delta$:

$$\epsilon^{t}(h) \leq \epsilon^{s}(h) + \hat{d}_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{U}^{s},\mathcal{U}^{t}) + \lambda_{\mathcal{H}} + 4\sqrt{\frac{2d\log(2n) + \log(2/\delta)}{n}},$$

where $\hat{d}_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{U}^s, \mathcal{U}^t)$ is the estimate of $d_{\mathcal{H}\Delta\mathcal{H}}(P_X^s, P_X^t)$ on the two sets of finite data samples.

Theory

Domain adaptation error bound

Theorem 2 (Domain adaptation error bound on the representation space (non-asymptotic) [23]). Let $g : \mathcal{X} \to \mathcal{Z}$ be a representation function towards some representation space \mathcal{Z} , and let \mathcal{F} denote a hypothesis space with VC dimension d of classifiers on top of \mathcal{Z} . For unlabeled samples \mathcal{U}^s , \mathcal{U}^t of \mathbf{x} of size n from the two domains, denote the samples of representations as $\tilde{\mathcal{U}}^s := \{g(\mathbf{x}) \mid \mathbf{x} \in \mathcal{U}^s\}$ and $\tilde{\mathcal{U}}^t := \{g(\mathbf{x}) \mid \mathbf{x} \in \mathcal{U}^t\}$. Then for any $f \in \mathcal{F}$ and $\delta \in (0, 1)$, the following inequality holds with probability at least $1 - \delta$:

$$\epsilon^{t}(f \circ g) \leq \hat{\epsilon}^{s}(f \circ g) + \hat{d}_{\mathcal{F}}(\tilde{\mathcal{U}}^{s}, \tilde{\mathcal{U}}^{t}) + \lambda_{\mathcal{F}} + \sqrt{\frac{4}{n} \left(d \log \frac{2n}{d} + d + \log \frac{4}{\delta} \right)},$$

where $\hat{\epsilon}^s(f \circ g) := \frac{1}{n} \sum_{\mathbf{x}_j \in \mathcal{U}^s} |f(g(\mathbf{x}_j)) - h^{*s}(\mathbf{x}_j)|$ is the empirical source risk on the finite data samples.

Theory

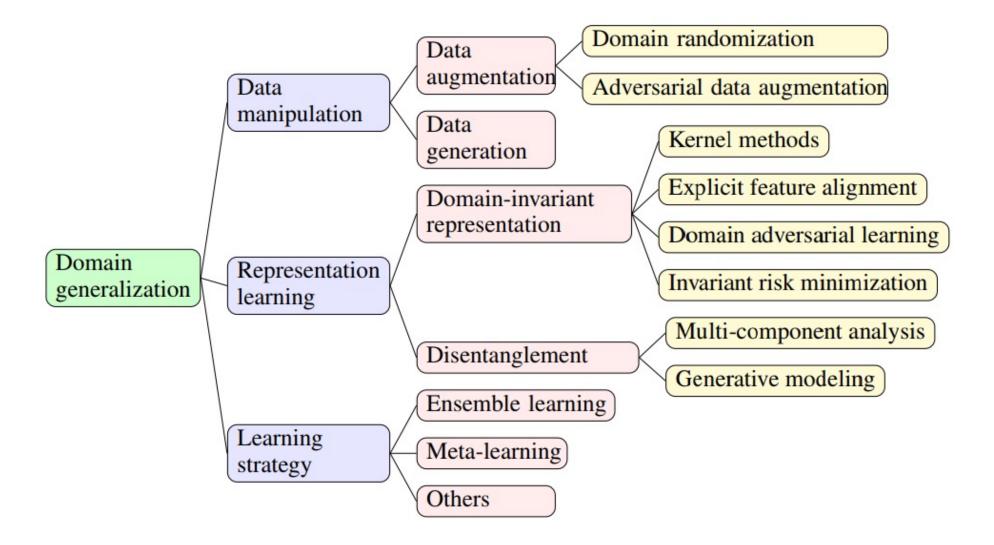
Domain generalization error bound

Theorem 4 (Domain generalization error bound [27]). Let $\gamma := \min_{\pi \in \Delta_M} d_{\mathcal{H}}(P_X^t, \sum_{i=1}^M \pi_i P_X^i)$ with minimizer π^* be the distance of P_X^t from the convex hull Λ , and $P_X^* := \sum_{i=1}^M \pi_i^* P_X^i$ be the best approximator within Λ . Let $\rho := \sup_{P_X', P_X'' \in \Lambda} d_{\mathcal{H}}(P_X', P_X'')$ be the diameter of Λ . Then it holds that

$$\epsilon^t(h) \le \sum_{i=1}^M \pi_i^* \epsilon^i(h) + \frac{\gamma + \rho}{2} + \lambda_{\mathcal{H},(P_X^t,P_X^*)},$$

where $\lambda_{\mathcal{H},(P_X^t,P_X^*)}$ is the ideal joint risk across the target domain and the domain with the best approximator distribution P_X^* .

Methodology



Data manipulation

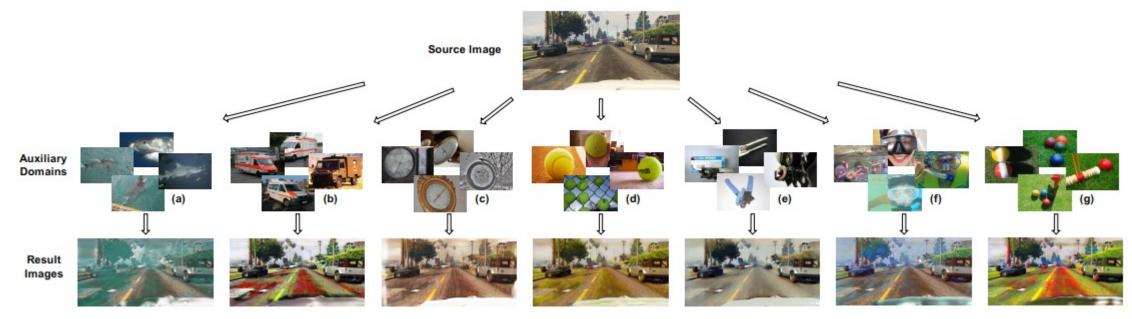
- \cdot Data quantity and quality are key factors of generalization
 - $\cdot\,$ Increase quality and quantity

 $\min_{h} \mathbb{E}_{\mathbf{x},y}[\ell(h(\mathbf{x}),y)] + \mathbb{E}_{\mathbf{x}',y}[\ell(h(\mathbf{x}'),y)]$

$$\mathbf{x'} = \mathrm{mani}(\mathbf{x}) ig \{ egin{array}{c} \mathsf{Data augmentation} \ \mathsf{Data generation} \end{array} iggin{array}{c} \mathsf{Data generation} \end{array}$$

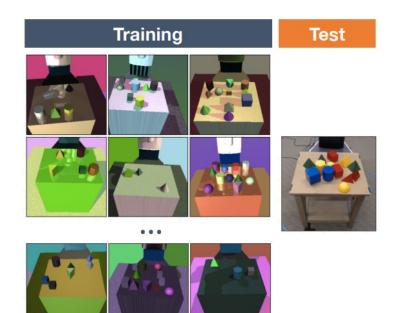
Data augmentation

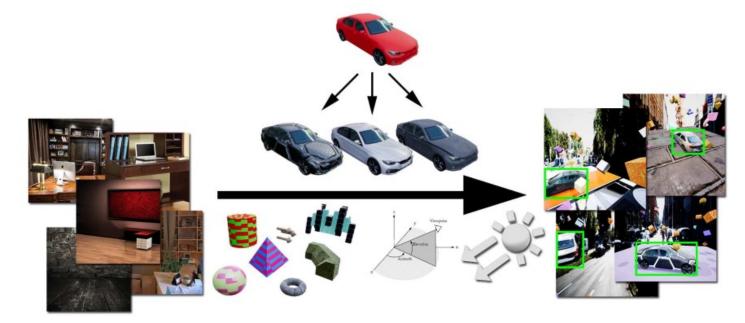
- \cdot Typical augmentation
 - Rotation, noise, color...
- Domain randomization (DR)
 - \cdot Shape, position, texture, viewpoint, lighting condition, noise...



Yue et al. Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization without Accessing Target Domain Data. 2019.

Domain randomization





Sim->Real robot control

Synthetic images -> Real images

- Tobin, et al. Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. IROS 2017.
- Tremblay et al. Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization. CVPR workshop 2018.

Context-aware randomization



Prakash et al. Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data. 2018.

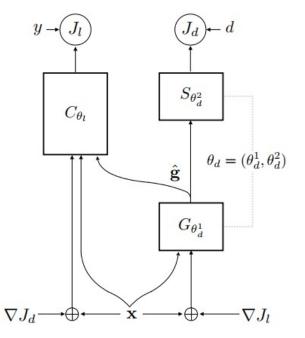
Adversarial data augmentation

- · CrossGrad: Adversarially augment data via gradient training
 - Generate data that are with same label y, but different domain label d

$$\mathbf{x}_i' = \mathbf{x}_i + \epsilon \nabla_{\mathbf{x}_i} J_d(\mathbf{x}_i, d_i)$$

- · ADV augmentation
 - · Learning the *worse-case* distribution to enable generalization

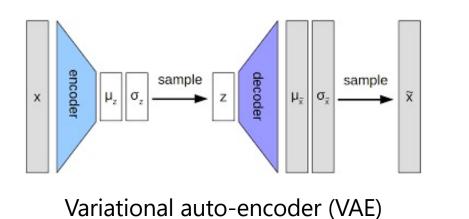
 $\underset{\theta \in \Theta}{\operatorname{minimize}} \sup_{P} \left\{ \mathbb{E}_{P}[\ell(\theta; (X, Y))] : D_{\theta}(P, P_{0}) \leq \rho \right\}$

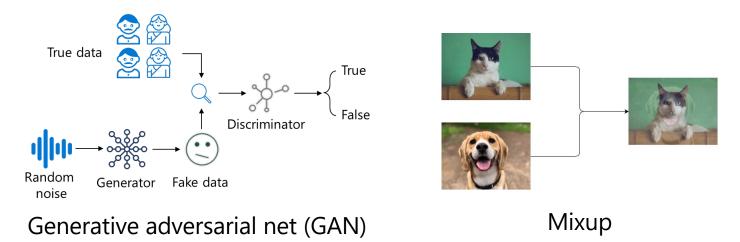


- Shankar et al. Generalizing across Domains via Cross-Gradient Training. ICLR 2018.
- Volpi, et al. Generalizing to Unseen Domains via Adversarial Data Augmentation. NeurIPS 2018.

Data generation

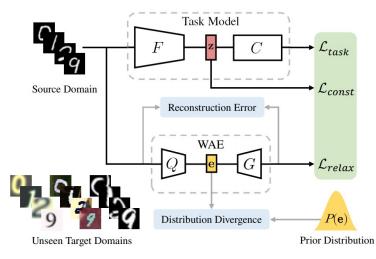
- · Directly generate data
 - · *Learning* to generate, instead of randomization / adversarial augmentation (Fixed scheme)



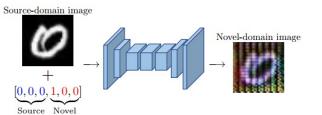


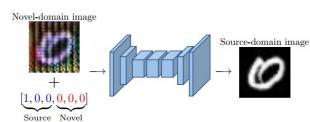
- Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv:1312.6114, 2013.
- Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.
- Zhang H, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization[J]. arXiv preprint arXiv:1710.09412, 2017.

Data generation



VAE for generation



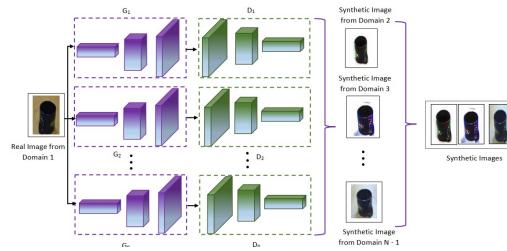


Forward cycle

Backward cycle

Conditional GAN for generation

- Qiao et al. Learning to Learn Single Domain Generalization. CVPR 2020.
- Rahman et al. Multi-component Image Translation for Deep Domain Generalization. 2020.
- Zhou et al. Learning to Generate Novel Domains for Domain Generalization. ECCV 2020.
- Somavarapu et al. Frustratingly Simple Domain Generalization via Image Stylization. 2020.



Multi-component generation

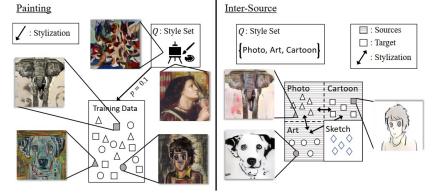
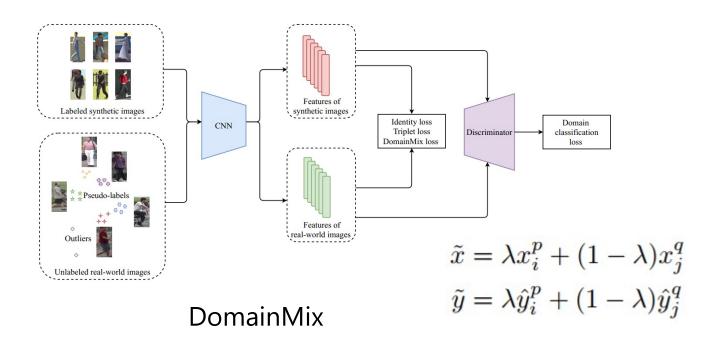


Image stylization

Mixup

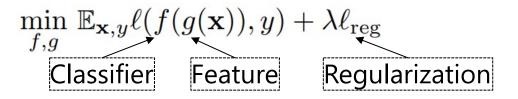


 $x = [x_1 x_2 x_3 x_4 x_5 x_6]$ $\tilde{x} = [x_5 x_6 x_4 x_3 x_1 x_2]$ (a) Shuffling batch w/ domain label $x = [x_1 x_2 x_3 x_4 x_5 x_6]$ $\tilde{x} = [x_6 x_1 x_5 x_3 x_2 x_4]$ (b) Shuffling batch w/ random shuffle
Style mixup

- Wang et al. DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations. 2020.
- Wang et al. Heterogeneous domain generalization via domain mixup. ICASSP 2021.
- Zhou et al. Domain generalization with mixstyle. ICLR 2021.

Representation Learning

· Learning domain-invariant representations



- How to learn representations?
 - Kernel-based methods
 - Domain adversarial learning
 - Explicit feature alignment
 - Invariant risk minimization

Kernel-based methods

- \cdot Using kernel methods to learn domain-invariant features
 - · DICA: domain-invariant component analysis

 $\widehat{\mathbb{V}}_{\mathcal{H}}(\mathcal{BS}) = \operatorname{tr}(\widetilde{K}Q) = \operatorname{tr}(B^{\top}KQKB)$

• TCA: Transfer Component Analysis

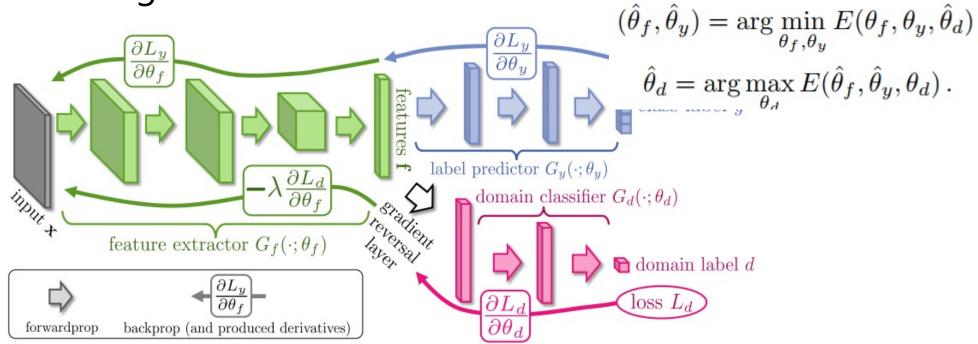
$$\min_{W} tr(W^T K L K W) + \mu tr(W^T W), \text{ s.t. } W^T K H K W = I.$$

• SCA: Scatter Component Analysis

- Blanchard et al. Generalizing from Several Related Classification Tasks to a New Unlabeled Sample. NeurIPS 2011.
- Muandet et al. Domain Generalization via Invariant Feature Representation. ICML 2013.
- Grubinger et al. Domain Generalization Based on Transfer Component Analysis. IWANN 2015.
- Ghifary et al. Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization. TPAMI 2017.

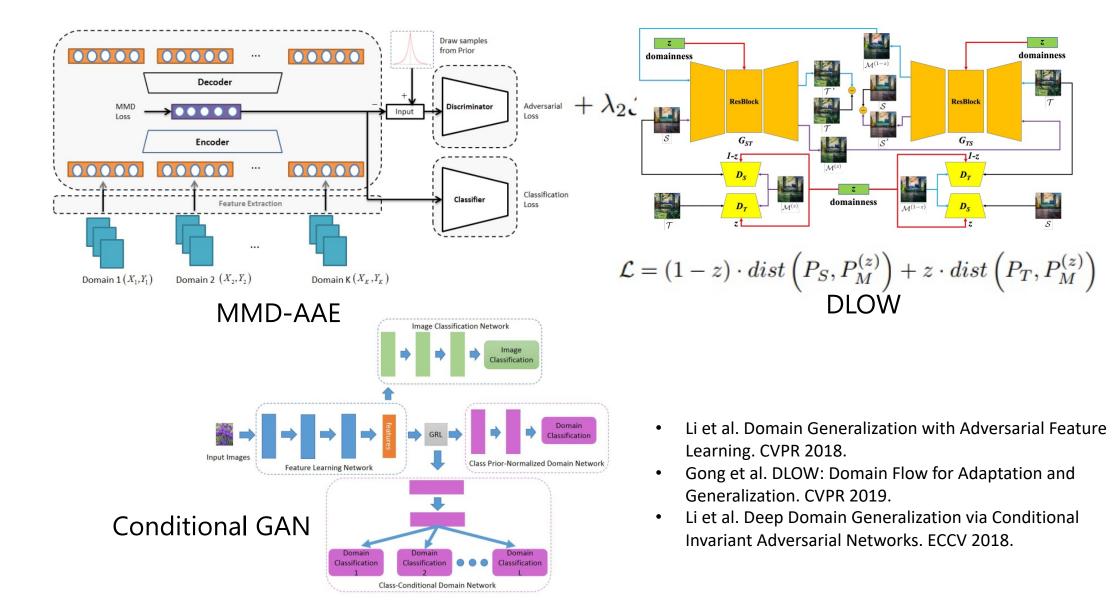
Domain adversarial learning

· Adversarial training



Ganin et al. Unsupervised Domain Adaptation by Backpropagation. ICML 2015.

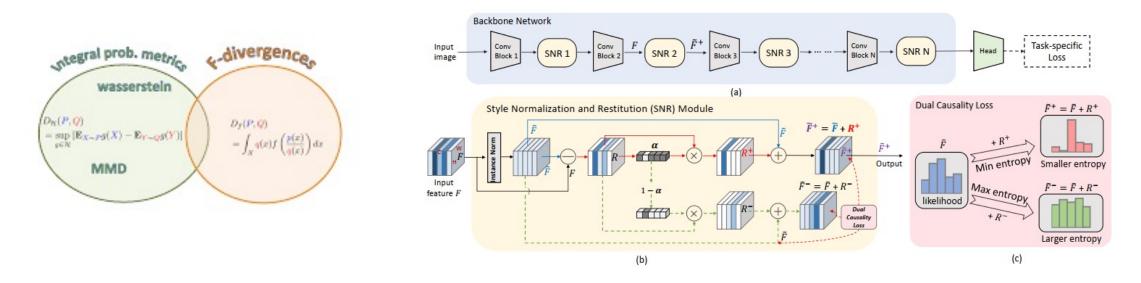
Domain adversarial learning



Explicit feature alignment

· Distance

- Maximum mean discrepancy: $MMD(\mathcal{F}, P_X, P_Y) = \sup (\mathbb{E}_p(f(x)) \mathbb{E}_p(f(y)))$
- Correlation alignment: $\ell_{CORAL} = \frac{1}{4d^2} \|C_S C_T\|_F^2$



Jin X, Lan C, Zeng W, et al. Style Normalization and Restitution for Domain Generalization and Adaptation[J]. arXiv preprint arXiv:2101.00588, 2021.

Invariant risk minimization

 \cdot IRM

 Do not match distributions; enforce optimal *classifier* on top of the representation space to be the same across all domains

$$\min_{\substack{g \in \mathcal{G}, \\ f \in \bigcap_{i=1}^{M} \arg\min_{f' \in \mathcal{F}} \epsilon^{i}(f' \circ g)}} \sum_{i=1}^{M} \epsilon^{i}(f \circ g)$$
$$\min_{g \in \mathcal{G}} \sum_{i=1}^{M} \epsilon^{i}(g) + \lambda \left\| \nabla_{f} \epsilon^{i}(f \circ g) \right\|_{f=1} \right\|^{2}$$

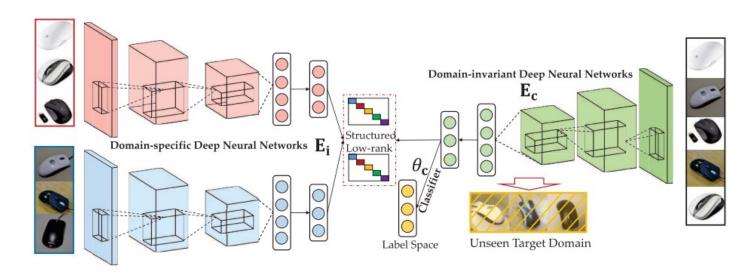
Arjovsky et al. Invariant risk minimization. arXiv preprint arXiv:1907.02893, 2019

Feature disentanglement

 \cdot Formulation

$$\min_{g_c,g_s,f} \mathbb{E}_{\mathbf{x},y} \ell(f(g_c(\mathbf{x})), y) + \lambda \ell_{\text{reg}} + \mu \ell_{\text{recon}}([g_c(\mathbf{x}), g_s(\mathbf{x})], \mathbf{x})$$

- Multi-component analysis
- Generative modeling
- UndoBias $\mathbf{w}_i = \mathbf{w}_0 + \Delta_i$
- \cdot Structure low-rank DG

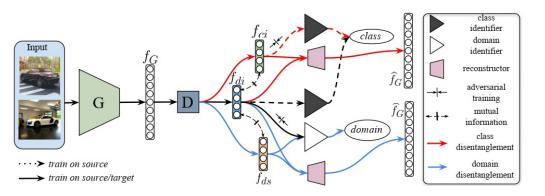


- Khosla A, Zhou T, Malisiewicz T, et al. Undoing the damage of dataset bias[C]//European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2012: 158-171.
- Ding Z, Fu Y. Deep domain generalization with structured low-rank constraint[J]. IEEE Transactions on Image Processing, 2017, 27(1): 304-313.

Generative modeling

- · DIVA: domain-invariant variational-autoencoder
- · DAL: domain-agnostic learning

 $\mathcal{F}_{\text{DIVA}}(d, \mathbf{x}, y) := \mathcal{L}_s(d, \mathbf{x}, y) + \alpha_d \mathbb{E}_{q_{\phi_d}(\mathbf{z}_d | \mathbf{x})} \left[\log q_{\omega_d}(d | \mathbf{z}_d) \right] + \alpha_y \mathbb{E}_{q_{\phi_y}(\mathbf{z}_y | \mathbf{x})} \left[\log q_{\omega_y}(y | \mathbf{z}_y) \right],$

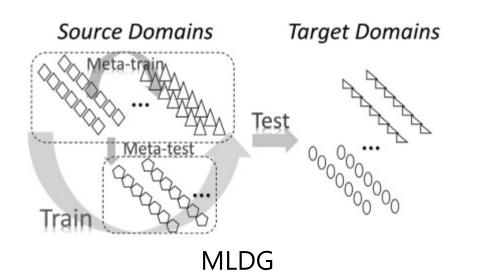


 X. Peng, Z. Huang, X. Sun, and K. Saenko, "Domain agnostic learning with disentangled representations," in *ICML*, 2019 Ilse M, Tomczak J M, Louizos C, et al. Diva: Domain invariant variational autoencoders[C]//Medical Imaging with Deep Learning. PMLR, 2020: 322-348.

Learning strategy

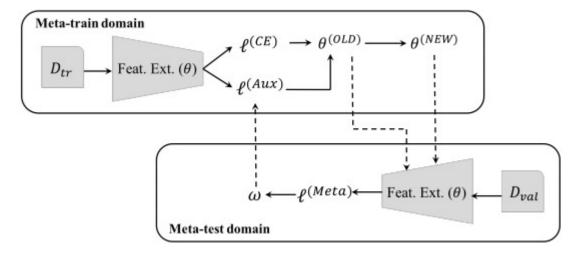
- \cdot Meta-learning
 - \cdot Divide domains into several tasks, then use meta-learning to learn general knowledge
- · Ensemble learning
 - \cdot Design ensemble models

Meta-learning



 $\theta^* = \text{Learn}(\mathcal{S}_{mte}; \phi^*)$ = Learn(\mathcal{S}_{mte} ; MetaLearn(\mathcal{S}_{mtrn})),

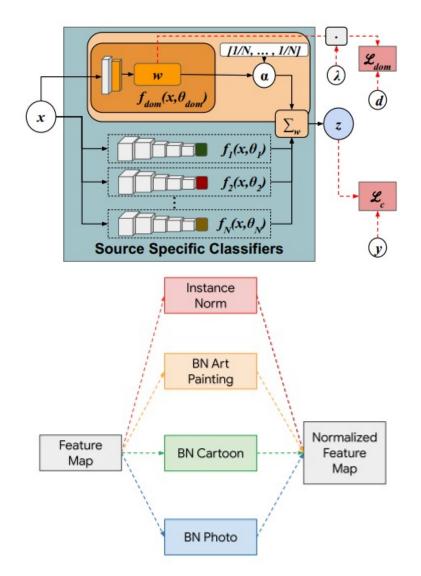
$$\theta = \theta - \alpha \frac{\partial(\ell(\mathcal{S}_{mte}; \theta) + \beta\ell(\mathcal{S}_{mtrn}; \phi))}{\partial\theta}$$

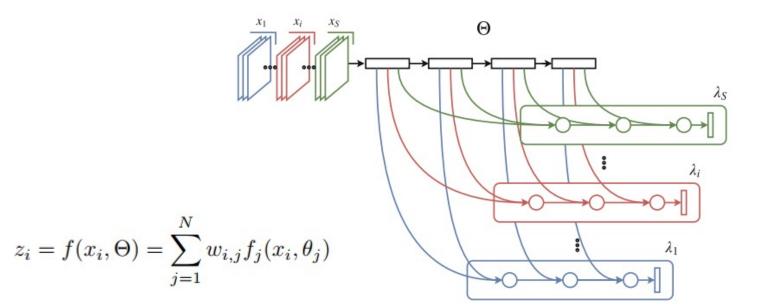


Feature Critic training $\min_{\theta,\phi_j s} \sum_{D_j \in \mathcal{D}_{trn}} \sum_{d_j \in D_j} \ell^{(CE)}(g_{\phi_j}(f_{\theta}(x^{(j)})), y^{(j)}) + \ell^{(Aux)}$

- Li D, Yang Y, Song Y Z, et al. Learning to generalize: Meta-learning for domain generalization. AAAI 2018.
- Li Y, Yang Y, Zhou W, et al. Feature-critic networks for heterogeneous domain generalization. ICML 2019.

Ensemble learning





- Mancini M, Bulo S R, Caputo B, et al. Best sources forward: domain generalization through source-specific nets. ICIP 2018.
- Segu M, Tonioni A, Tombari F. Batch normalization embeddings for deep domain generalization[J]. arXiv preprint arXiv:2011.12672, 2020.
- D'Innocente A, Caputo B. Domain generalization with domain-specific aggregation modules[C]//German Conference on Pattern Recognition. Springer, Cham, 2018: 187-198.

Datasets and applications

· Datasets

Dataset	#Domain	#Class	#Sample	Description
Office-Caltech	4	10	2,533	Caltech, Amazon, Webcam, DSLR
Office-31	3	31	4,110	Amazon, Webcam, DSLR
PACS	4	7	9,991	Art, Cartoon, Photos, Sketches
VLCS	4	5	10,729	Caltech101, LabelMe, SUN09, VOC2007
Office-Home	4	65	15,588	Art, Clipart, Product, Real
Terra Incognita	4	10	24,788	Wild animal images taken at locations L100, L38, L43, L46
Rotated MNIST	6	10	70,000	Digits rotated from 0° to 90° with an interval of 15°
DomainNet	6	345	586,575	Clipart, Infograph, Painting, Quickdraw, Real, Sketch

\cdot Application

- \cdot Image classification / segmentation / detection / ReID
- · Reinforcement learning
- · Parkinson's disease
- \cdot Activity recognition
- Fault diagnosis

Challenges

- · Continuous domain generalization
 - · Continuous / online learning
- \cdot Generalize to novel categories
 - $\cdot\,$ New categories instead of closed set
- · Interpretable domain generalization
 - Learning to interpret: why it can generalize?
- \cdot Large-scale pre-training / self-learning and DG
 - $\cdot\,$ The role of pre-training and self-learning with DG
- \cdot Performance evaluation
 - · Develop more fair and application-driven evaluation standards

Thanks

jindong.wang@microsoft.com

https://arxiv.org/abs/2103.03097

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG